International Journal of Multidisciplinary Research and Development Online ISSN: 2349-4182, Print ISSN: 2349-5979; Impact Factor: RJIF 5.72

Received: 10-06-2019; Accepted: 13-07-2019

www.allsubjectjournal.com

Volume 6; Issue 9; September 2019; Page No. 88-93

Pattern of disease & associated factors among neonates admitted to neonatal intensive care unit at jimma university medical center, jimma, Southwest Ethiopia

Ebissa Bayana¹, Debela Gela², Tigistu Gebreyohannis³, Adugna Olani⁴

- ^{1,4} School of Nursing and Midwifery, Institute of Health Science, Jimma University, Jimma, Ethiopia
- ^{2,3} Addis Ababa University college of health sciences, school of nursing and midwifery, Ethiopia

Abstract

Neonatal period is a susceptible time in which the newborn has to adapt to a totally new environment and is vulnerable to many problems, which may even be life threatening. Analyzing the neonatal disease pattern helps health care givers and policy makers to design better strategies.

This study aimed to assess the pattern of diseases and associated factors among neonates admitted to neonatal intensive care unit at Jimma university medical center, Jimma, Southwest Ethiopi

Retrospective cross-sectional study design was conducted from March 15 to 30, 2018 among neonates admitted over a period of two years (January 1, 2016 to December 31, 2017) on 341 samples. Systematic random sampling technique was employed to get required samples from database. Data was entered to Epi-data 3.1 and exported to SPSS Version 23 for analysis. Bivariate and multivariate logistic regression was used to analyze the association between dependent and independent variables and P-value <0.05 at 95% CI was declared statistically significant association.

The main disease patterns identified were neonatal sepsis (19.9%), prematurity (14.0%) and hyaline membrane disease (11.9%). More than half (55.56%) of neonates were admitted in the first 24 hours. Neonatal sepsis, prematurity, and hyaline membrane disease were the most frequently occurring diseases.

Keywords: Pattern of disease, neonate, neonatal intensive care unit

Introduction

Neonatal period is defined as the period from birth up to first 28 days of life and further divided into very early (birth to < 24 hour (hr)), early (24hr to <7 days), and late neonatal period (7 days to < 28 days) [1]. The period is characterized by the transition to extra uterine life and rapid growth and development. Newborn health is the key to child health and survival and is the most hazardous period compared to any other time during the child's first year of life [2].

The pattern of diseases in neonatal period is a sensitive indicator of availability, utilization and effectiveness of mother and child health services in the community [3, 4]. Neonatal morbidity and mortality continue to be a large component of the burden of disease in Sub-Sahara Africa and its rates reflect a nation's socio-economic status, the efficiency and effectiveness of health care services [5]. Management of common neonatal problems requires clinical expertise, training, access to suitable equipment, and well organized referral pathways [6] to ensure health care is of sufficient quality, which is important to monitor outcomes of care provided [7]. Neonatal morbidity and mortality is concerning health problem among low and middle income countries [8]. Preterm birth (PTB) and very preterm birth (VPTB) are leading causes of morbidity in infants worldwide [9, 10]. In Sub-Saharan Africa (SSA), neonates confronted with a diversity of harmful clinical conditions, especially infectious diseases, which requires urgent interventions [11]. One of challenge in developing country is caring for the critically ill neonate, where health needs often surpass available resources like infrastructures, which are typically limited in low income countries [12].

Timely access to simple interventions such as treating maternal infections during pregnancy, ensuring a clean safe birth and care of the umbilical cord can also decrease neonatal morbidity and mortality [13, 14].

Methods and Materials Study Area and period

The study was conducted in Jimma university medical center which is located in Jimma town, 352 km south-west of Addis Ababa. It is also the only hospital having NICU unit in Jimma Zone.

Jimma university medical center is one of the biggest and oldest university specialized hospital in the country established in 1922 and providing service for more than 15 million people in the catchment area. Currently, it is the only teaching and referral hospital in south western part of the country.

Jimma university medical center has major clinical departments like internal medicine, surgery, pediatrics, and gynecology/obstetrics and also has other clinical departments like, dentistry, ophthalmology, psychiatry, anesthesia, and dermatology.

The study was conducted from March 15-30, 2018 G.

Data processing and analysis

The data was checked for completeness, compiled, coded, cleaned and entered into Epi-data version 3.1 and exported to SPSS version 23 for analysis. Data analysis involved descriptive statistics, including frequency, percentage, mean and standard deviations. Crude and adjusted odds ratio (AOR) was analyzed with a 95% confidence interval (CI).

P-value <0.05 was declared a statistically significant association.

Ethical consideration

Ethical clearance and approval to conduct this research was obtained from Research and Ethical Review Committee of School of Nursing and Midwifery, College of Health Sciences, Addis Ababa University. Permission to conduct the study was also requested from JUMC Administrative office. To keep the confidentiality all collected data was coded and locked in a separate place and it was used only for the research purpose. The ethical consideration was taken in to account throughout the study

Result

Socio-demographic Characteristics of neonates admitted to NICU

Out of 370 samples, 29 of the samples were excluded from the study. Three hundred forty one (341) were eligible for the study, out of which 211 (61.9%) were male neonates making the male to female ratio 1.6:1. Vast majority of them, 233 (68.3) were admitted in less than 24 hours of their birth. Concerning their place of residence about two third, 228 (66.9%) of them lives outside of Jimma town. Regarding their birth place more than half, 205 (60.1%) of the neonates were inborn (Table 1).

Maternal factors/delivery factors and neonatal factors

Regarding parity, 184 (54%) were multiparous mothers. Among 123 (36.07%) of mothers having maternal disease, 38 (30.9%) had infections followed by hypertensive disorder of pregnancy which accounted 32 (26.1%). Concerning their gestational age, more than two third (69.5%) of the neonates were term. Regarding their weight, more than half 207 (60.7%) of the neonates had weight 2500- 4000gm and with respect to anthropometry almost all, 317 (93%) of them were appropriate for their gestational age. Regarding to mode of delivery, about half (51.6 %) of neonates were delivered spontaneously (Table 2).

Pattern of Disease

The major morbidity profile among all neonates was sepsis which accounted 145 (19.9%) followed by prematurity 102 (14.0%) and hyaline membrane disease 87 (11.9%) (Figure 1).

Factors associated with pattern of diseases

In multivariate analysis maternal infection, PROM, age of neonate greater than 7days, C/S and instrumental delivery were significantly associated to neonatal sepsis.

Those neonates born from mothers who had infection [P = 0.001,AOR=3.84 95% CI: (1.78,8.31)] and PROM (P = 0.050,AOR = 2.31, 95%CI (0.99,5.40) acquired sepsis 4 times and 2 times respectively compared to those who have no any maternal diseases. Those neonates greater than 7days of age [P= 0.003, AOR= 4.78, 95%CI= (1.68, 13.57)] were 5 times more likely developed sepsis compared to those <24hr. Neonates delivered by C/S [P=0.017, AOR=1.93, 95%CI: (1.12, 3.33)] and instrumental delivery [P=0.026, AOR=2.16, 95%CI: (1.09, 4.26)] increased the risk of acquiring sepsis by two times compared to SVD..

Maternal infection and gestational was significantly associated to meningitis. Those neonates who were born from mothers who had infection [P= 0.002, AOR=3.29, 95%CI: (1.57, 6.92)] were 3 times more likely acquired

meningitis compared to those who were born from mothers who had no any maternal disease.

Preterm birth and weight of neonates (< 2500gm and > 4000gm) were significantly associated to HMD. Preterm neonates [(P= 0.000, AOR = 5.66(2.86, 11.18)] were 6 times more likely acquired HMD compared to term neonates. Similarly weight <2500gm [P =0.000, AOR= 6.54, 95%CI: (3.18, 13.41)], and weight >4000gm [P= 0.032, AOR= 7.17, 95%CI (1.18, 43.43)] acquired HMD 7 times compared to normal birth weight neonates.

Only age was significantly associated to hypothermia. Neonates whose their age was 24hr to 7days [P= 0.004, AOR= 0.33, 95% CI: (0.15, 0.71)] were 67% less likely acquired hypothermia compared to those less than 24hr life of their age.

Primipara, instrumental deliveries and LGA were significantly associated to PNA. Neonates who born from primipara mothers [P= 0.039, AOR= 1.96, 95 %CI: (1.03, 3.73)] were 2 times more likely acquired PNA compared to neonates who born from multiparous mothers. Neonates delivered with assistance of instruments [P = 0.002, AOR = 3.61, 95%CI (1.62, 8.048] were 4 times more likely acquired PNA compared to those neonates delivered by SVD. Large for gestational ages [P= 0.016, AOR= 8.03, (1.47, 43.64)] were 8 times more likely developed PNA compared to AGA neonates.

Instrumental deliveries were significantly associated to MAS. Neonates delivered with assistance of instruments [P=0.002, AOR=3.42, 95%CI:(1.59,7.37)] were 3 times more likely acquired MAS compared to those who were born by SVD.

Hypertensive disorder of pregnancy, APH and multiple births were significantly associated to prematurity. Neonates born from of mothers who had hypertensive disorder of pregnancy [P = 0.000, AOR = 4.95, 95%CI: (2.01,12.17)] and APH [P= 0.001,AOR = 8.34,95%CI: (2.31,30.11)] were 5 times and 8 times respectively more likely acquired prematurity compared to those neonates born from mothers who had no any disease. Similarly neonates who were multiple births [P= 0.000, AOR= 6.45, 95%CI: (3.00, 13.84) were 6 times more likely acquired prematurity compared to singletons (Table 3).

Discussion

This study revealed sepsis was the frequently occurring disease among neonates admitted in NICU. This finding was similar with study conducted at Tamale, Nepal and BPKIHS [15, 17]

The similarity in finding might be due to overcrowding, high patient to few staff ratio, inadequate availability of disposable materials and poor compliance to infection control measures, but study conducted in Punjab, Multan, Tamil and South Africa showed that the frequently occurring disease was asphyxia [18, 21]. This difference might be explained due to the maternal and obstetric related problems.

In this study, maternal diseases like infection and PROM, age of the neonates > 7days, mode of deliveries like C/S, and instrumental deliveries, were observed as significant predictors of sepsis. This finding is almost consistent with studies conducted in other countries like Thailand, Pakistan and Rwanda [22, 24]. This might be explained due to unclean deliveries, lack of health education on danger signs of pregnancy, inadequate antenatal services and late referral of

complicated labor. This implies that as we have to give attention to maternal infection to save the life newborn. Age of neonates > 7 days is also one predictor of neonatal sepsis which might be due to environmental sources or horizontal transmission from direct contacts of parents.

In this study, maternal infection was detected as significant predictors of meningitis. This finding is consistent with study conducted in Iran ^[25] in which prenatal risk factors associated with meningitis were, maternal vaginitis, asymptomatic bacteriuria, and prematurity. This similarity might be due to the chance of ascending microorganisms from the birth canal into uterus.

This study also revealed being preterm, weight of the neonates < 2500gm and >were detected as significant predictors of HMD. This finding is almost similar with study conducted in Cameroon and Turkey [26, 27] which showed preterm and macrosomia were independent predictors of HMD.

This might be due to structural and functional immaturity of the lungs (a deficiency in pulmonary surfactant) of preterm. The role of macrosomia as a predictor of HMD might be to the increased incidence of intra-partum fetal distress, shoulder dystocia, instrumental vaginal deliveries with birth injuries, and neonatal hypoglycemia that is frequently associated with big baby.

In this study age of the neonates 24 hr to 7days was significantly associated to hypothermia. Study conducted in Nigeria revealed the hypothermia was highly prevalent among babies aged -6 h [28]. This justifies neonates > 24hr less likely acquire hypothermia compared to those < 24hr ages of their life. This might be due to neonatal adaptations to the environment and decreased loss of heat from a combination of different factors like evaporation of fluid from the skin, convective loss to relatively cold environment and conductive heat loss through contact with cold surfaces. In this study, LGA, primipara and instrumental deliveries were significant predictors of PNA. Neonates who were LGA might acquire PNA due to with feto-pelvic disproportion, which results in prolonged or obstructed labor as compared with AGA. Prim parity was also identified as a significant risk factor of perinatal asphyxia which is in line with study conducted in different places (Ahmedabad, Nigeria and Karachi) [29, 31]. This might be explained that, primi-parous women are often ignorant of the demands of pregnancy there by neglecting early booking and regular attendance to antenatal care. This may result in complications of prolonged labor, which may subsequently end up with delivery of asphyxiated babies.

Instrumental delivery was found to be associated with asphyxia in this study, which is consistent to study conducted in Dire Dhowa and Gusau [32, 33]. This may be explained by the fact that the hospital is a referral center where cases that could not be managed by other hospitals are referred to and also where women with pregnancy/labor complications attend without referral. It might be also due to the pelvic disproportions and prolonged labour which make deliveries more difficult. These could lead to fetal complications which resultant in fetal distress and ultimately

perinatal asphyxia. This study identified that those neonates delivered by instrument were 3 time more likely acquired MAS. In contrast to this, study conducted in in a tertiary care center in Kerala showed that MAS was more common among neonates delivered by normal vaginal delivery (34). However study conducted in Narayana medical college hospital showed MAS occurred more commonly in babies born through caesarean section [35]. This variation might be due to difference sample size, management protocols of the centers and preferences of mothers.

According to this study maternal hypertensive disorder was significant predictors of prematurity. In line to this finding, in USA preeclampsia was one subsequent cause of prematurity [36]. The risk of prematurity is increased in women with preexisting, chronic hypertension, pregnancy-induced hypertensive disorders; was also identified in America [37].

This might be due to the fact that hypertensive disorders prevents the placenta from receiving enough blood and makes the placenta pulls away from the wall of the uterus, causing maternal premature delivery.

Similarly this study also identified those neonates born from mothers who had APH were 8 times more likely to be premature. Inline to this finding, study conducted in UK and kenyatta national hospital also revealed that prematurity was high among neonates born from mothers having APH [38, 39]. This might be due to uteroplacental ischemia that results in preterm delivery even though this may not be causal in nature.

Multiple births were also significantly associated with prematurity in this study. This is consistent with study conducted at Kenya and Beijing [39, 40]. This might be due to uterine over distension which results in spontaneous preterm

Conclusion

This study indicated that neonatal sepsis (19.9%), prematurity (14%) and hyaline membrane disease (11.9%) were the frequently occurring neonatal diseases. Maternal disease such as infection, hypertensive disorder of pregnancy, antepartum hemorrhage and premature rapture of membrane, age of neonate >24 hour, mode of delivery such as cesarean section and instrumental delivery, presence of multiple births, gestational age less than 37 weeks (preterm), weight of the neonate < 2500gm and > 4000gm, place of delivery (out born), parity (primipara) and birth size like large for gestational age were found to independent predictors of pattern of diseases.

Conflicts of interests

There is no competing interest

Acknowledgements

We would like to extend my thanks Addis Ababa University, School of Nursing and Midwifery for funding for this research. Our deepest gratitude goes also extend to Jimma University medical center, especially medical record number offices for their cooperation during the data collection period.

Table 1: Socio-demographic Characteristics of neonates admitted in NICU of JUMC, Jimma town, Oromia, Southwest Ethiopia, 2018 (n=341)

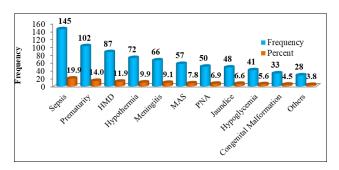
Characteristics		Frequency	Percent
Sex	Male	211	61.9
Sex	Female	130	38.1
Age	Less than 24 hr	233	68.3
	24hr-7 days	88	25.8
	Greater than 7 days and <28 days	20	5.9
Place of residence	Jimma Town	113	33.1
	Outside of Jimma Town	228	66.9
Place of delivery	In born	205	60.1
	Out born	136	39.9

Table 2: Maternal/delivery and neonatal factors admitted in NICU of JUMC, Jimma town, Oromia, Southwest Ethiopia, 2018 (n=341)

Characteristics		Frequency	Percent
Parity	Primipara	157	46.0
	Multipara	184	54.0
	SVD	176	51.6
Mode of delivery	C/S	113	33.1
	Instrumental	52	15.2
	Gestational diabetes	2	1.6
Maternal diseases (n = 123)	Hypertensive disorder of pregnancy	32	26.0
	Infections	38	30.9
	HIV/AIDS	7	5.7
	Antepartum hemorrhage	13	10.6
	PROM	27	21.9
	Others	4	3.3
Gestational age	Preterm (3<37 weeks)	102	29.9
	Term (37-42 weeks)	237	69.5
	Post-term (> 42 weeks)	2	0.6
	Low birth weight(<2500gm)	207	60.7
Birth weight	Normal birth weight(2500-4000gm)	128	37.5
	Macrosomia(>4000gm)	6	1.8
Birth Size	Appropriate for Gestational Age (AGA)	317	93.0
	Small for Gestational Age (SGA)	18	5.3
	Large for Gestational Age (LGA)	6	1.8

NB: SVD = Spontaneous Vaginal Delivery, C/S = Cesarean Section, PROM = Premature Rapture of Membrane

Table 3: Multivariate analysis of factors associated with distributions diseases of neonates admitted in NICU of JUMC, Jimma town, Oromia, Southwest Ethiopia, 2018(n=341)


Characteristics	Disease Patterns	COR(95% C.I)	AOR (95% C.I)	P-Value	
	Sepsis				
Maternal disease	Infection	3.84 (1.81,8.14)	3.84(1.78,8.31)	0.001*	
	PROM	2.66 (1.16,6.08)	2.31(0.99,5.40)	00.05*	
	No Disease		1		
A an of magnets	< 24hr		1		
Age of neonate	> 7days	3.70 (1.37,9.99)	4.78(1.68,13.57)	0.003*	
	C/S	1.50 (0.93,2.43)	1.93(1.12,3.33)	0.017*	
Mode of delivery	Instrumental	1.84 (0.98,3.44)	2.16(1.09,4.26)	0.026*	
	SVD		1		
	Meningitis				
M-41 di	Infection	3.29 (1.57,6.92)	3.29(1.57,6.92)	0.002*	
Maternal disease	No Disease		1		
	HMD				
Gestational age	Term		1		
	Preterm	13.14 (7.40,23.34)	5.66 (2.86,11.18)	0.000*	
	2500-4000gm		1		
Wight of the neonate	< 2500gm	15.44 (8.22,29.01)	6.54 (3.18,13.41)	0.000*	
	> 4000gm	6.40 (1.08,37.83)	7.17(1.18,43.43)	0.032*	
	Hypothermia				
Age	< 24hr		1		
	24hr-7days	0.33 (0.15,0.71)	0.33 (0.15,0.71)	0.004*	
	PNA				
Parity	Primipara	1.93 (1.05,3.57)	1.96 (1.03,3.73)	0.039*	

	Multipara		1	
Mode of delivery	SVD		1	
	Instrumental	3.79 (1.73,8.28)	3.92(1.69,9.10)	0.001*
Birth size	AGA		1	
	LGA	5.89 (1.15,30.08)	8.03(1.47,43.64)	0.016*
	MAS			
Mode of delivery	SVD		1	
	Instrumental	4.75 (2.27,9.95)	3.42 (1.59,7.37)	0.002*
	Prematurity			
Maternal disease	Hypertensive disorder	2.49 (1.16,5.31)	4.95(2.01,12.17)	0.000*
	APH	4.51 (1.42,14.38)	8.34(2.31,30.11)	0.001*
	No maternal disease		1	
Multiple birth	Yes	5.37 (2.7,10.6)	6.45(3.00,13.84)	0.000*
	No		1	

^{*}significant association, 1 = reference categories

NB: APH=Antepartum Hemorrhage, PROM= Premature Rapture of Membrane, C/S= cesarean Section, SVD= Spontaneous Vaginal Delivery, HMD= Hyaline Membrane Disease, PNA= Perinatal Asphyxia, LGA=Large for Gestational Age

Distribution of diseases in neonatal intensive care unit of Jimma university medical center

Fig 1: Distributions of diseases of neonates admitted in NICU of JUMC, Jimma town, Oromia, Southwest Ethiopia, 2018(n=341). The Blue color indicates frequency and the red color shows its percentage.

More than two response is possible
NB: HMD = Hyaline Membrane Disease, MAS = Meconium Aspiration Syndrome, PNA = Perinatal Asphyxia

References

- Waldemar A. Carlo. Overview of mortality and morbidity. 20th edetion. Kliegman RM SB, SP Geme III JW, Schor NF, Behrman RE, editor. Philadelphia: Elsevier; 2016.
- 2. Baghel B, Sahu A, Vishwanadham K. Pattern of admission and outcome of neonates in a NICU of Tribal Region Bastar, India. 2016; 2(6):147-50. DOI: 1021276/ijmrp201626029.
- 3. Toma, Bose I, Olukemi A, Ibrahim O, Carol A, Rose D, *et al.* Pattern of neonatal admissions and outcome in a tertiary institution in north central Nigeria. Journal of Medicine in the Tropics. 2013; 15(2):121.
- 4. Ugwu, McGil G. Pattern of morbidity and mortality in the newborn special care unit in a tertiary institution in the Niger delta region of Nigeria: A two year prospective study. Global Advanced Research Journal of Medicine and Medical Sciences. 2012; 1(6):133-8.
- Ike Elizabeth U, Modupe O, Oyetunde. Pattern of diseases and care outcomes of neonates admitted in special care baby unit of university college hospital,

- Ibadan, Nigeria IOSR Journal of Nursing and Health Science. Jun. 2015; 4(3).
- 6. Ganatra H, Zaidi K. Neonatal infections in the developing world. Seminars in perinatology. jsemperi. 2010; 34(6):416.
- 7. Darmstadt, Gary L Kinney, Mary V Chopra, Mickey Cousens, Simon Kak, Lily Paul. *et al.* Who has been caring for the baby? The Lancet. 2014; 384(9938):174-88
- 8. Black, Robert E Cousens, Simon Johnson, Hope L Lawn, Joy E Rudan, Igor Bassani, Diego G Jha, Prabhat Campbell. *et al.* Global, regional, and national causes of child mortality in 2008 a systematic analysis. The lancet. 2010; 375(9730):1969-87.
- 9. Beck, Stacy W, Daniel S, Lale B, Ana P Merialdi, Mario R, Jennifer H Rubens. *et al.* The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization. 2010; 88(1):31-8.
- 10. Lawn, Joy E Gravett, Michael G Nunes, Toni M Rubens, Craig E Stanton, Cynthia. Global report on preterm birth and stillbirth (1 of 7) definitions, description of the burden and opportunities to improve data. BMC pregnancy and childbirth. 2010; 10(1).
- 11. Herbert HK, Lee AC, Chandran A, Rudan I, Baqui AH. Care seeking for neonatal illness in low-and middle-income countries: a systematic review. PLoS medicine. 2012; 9(3).
- 12. Hoque M, Alam S, Ahmed A. Pattern of neonatal admissions and outcome in an intensive care unit (ICU) of a tertiary care paediatric hospital in Bangladesh–A One-Year Analysis. Journal of Bangladesh College of Physicians and Surgeons. 2014; 31(3):134-9.
- 13. Kananura, Rornald M Tetui, Moses Mutebi, Aloysius Bua, John N Waiswa, Peter Kiwanuka, *et al.* The neonatal mortality and its determinants in rural communities of Eastern Uganda. Reproductive health. 2016; 13(1):13.
- 14. Gogia S, Sachdev HS. Home visits by community health workers to prevent neonatal deaths in developing countries: a systematic review. Bulletin of the World Health Organization. 2010; 88(9):658-66.
- 15. Muhammad S, Raghib I, Shahzad B, Mubarak Ai, Khan Z. Pattern of neonatal admissions & its outcome in a tertiary care hospital of Southern Punjab. P J M H S. 2014; 8:4.
- 16. Walana W, Acquah Ekuban K, Abdul-Mumin A, Naafu B, Aruk Pattern E. Causes and treatment outcomes of neonatal admission in the Tamale teaching hospital.

- Clinics mother child health. 2016; 13(252):2.
- 17. Kanodia P, Yadav SK, Bhatta NK, Singh RR. Disease profile and outcome of newborn admitted to neonatology unit of BPKIHS. Journal of College of Medical Sciences-Nepal. 2015; 11(3):20-4.
- 18. Shah GS, Shah LR, Thapa A. Clinical profile and outcome of neonates admitted to the neonatal intensive care unit (NICU) at BPKIHS: A need for advanced neonatal care. Qatar Medical Journal. 2017; 2017:74.
- 19. Quddusi AI, Razzaq A, Hussain S, Hussain A. Pattern of neonatal admission at the children's hospital and the institute of child health, multan. Journal of Ayub Medical College Abbottabad. 2012; 24(2):108-10.
- 20. Saminathan D, Mythili B, Ramesh E, Zacharias AM. Incidence, Mortality pattern, and outcome of low birth weight babies admitted in a rural tertiary care center: A Retrospective Study, 2015.
- 21. Hoque M, Haaq S, Islam R. Causes of neonatal admissions and deaths at a rural hospital in KwaZulu-Natal, South Africa. Southern African Journal of Epidemiology and Infection. 2011; 26(1):26-9.
- 22. Rakhia A, Khan M, Memon AA, Dahar SA. Pattern and outcome of neonatal ailments in a tertiary care hospital. Pakistan Journal of Medical Research. 2014; 53(1):14.
- 23. Ndayisenga T. Maternal and newborn risk factors associated with neonatal mortality in Gitwe district hospital in ruhango district, Rwanda. IJMPH. 2016; 6(2):98-102.
- 24. Opara PI, Jaja T, Onubogu UC. Morbidity and mortality amongst infants of diabetic mothers admitted into a special care baby unit in Port Harcourt, Nigeria. Italian journal of pediatrics. 2010; 36(1):77.
- 25. Khalessi N, Afsharkhas L. Neonatal Meningitis: Risk factors, causes and neurologic complications. Iran J Child Neurol. Autumn. 2014; 8(4):46-50.
- 26. Joel N, Simeon, Regina N, Esther B, Paul K. Neonatal respiratory distress in a reference neonatal unit in Cameroon: an analysis of prevalence, predictors, etiologies and outcomes. Pan African Medical Journal ISSN: 1937-8688, 2016.
- 27. Fedakar A, Aydogdu C. Clinical features of neonates treated in the intensive care unit for respiratory distress in Turkey. Turk J Pediatr. 2011; 53(2):173-9
- 28. Tinuade A. Ogunlesi, Olusoga B, Mojisola M. Ogundeyi. Prevalence and risk factors for hypothermia on admission in Nigerian babies J. Perinat. Med. 2009; 37:180-184.
- 29. Dalal CA, Bodar NL. Astudy on birth asphyxia at tertiary health centre. Natl J Med Res. 2013; 3:374-6.
- Onyearugha CN, Ugboma HA. Severe birth asphyxia: Risk factors as seen in a tertiary institution in the Niger Delta area of Nigeria. Control J Trop Med. 2010; 4:11-9.
- 31. Aslam HM, Saleem S, Afzal R, Iqbal U, Saleem SM, Shaikh MW, Shahid N. Risk factors of birth asphyxia. Italian journal of pediatrics. 2014; 40(1):94.
- 32. Ilah BG, Aminu MS, Musa A, Adelakun MB, Adeniji AO, Kolawole T. Prevalence and risk factors for perinatal asphyxia as seen at a specialist hospital in Gusau, Nigeria. Sub-Saharan Afr J Med. 2015; 2:64-9.
- 33. Ibrahim NA, Muhye A, Abdulie S. Prevalence of birth asphyxia and associated factors among neonates delivered in Dilchora Referral Hospital, in Dire Dawa, Eastern Ethiopia. Clinics Mother Child Health.

- (2017).doi:10.4172/2090-7214.1000279
- 34. Jyoti R, Uma DN. Rajeshwary U, "Risk factors for meconium aspiration and mas (meconium aspiration syndrome) in neonates born through meconium stained amniotic fluid (MSAF) in a tertiary care centre in Malabar (Kerala)". Journal of Evolution of Medical and Dental Sciences. 2013; 49(09):9489-9495.
- 35. Nath GDR, Penchalaiah A. Study of clinical profile of meconium aspiration syndrome in relation to gestational age and birth weight and their immediate outcome at Narayana Medical College Hospital, Nellore, India. Int J Contemp Pediatr. 2017; 4:2142-50
- 36. Roberts JM, August PA, Bakris G, Barton JR, Bernstein IM, Druzin M, *et al.* Hypertension in Pregnancy report of the american college of obstetricians and gynecologists' task force on hypertension in pregnancy. Obstetrics and Gynecology. 2013; 122:1122-31. https://doi.org/10.1097/01.AOG. 0000437382.03963.88 PMID: 24150027
- 37. Madan J, Chen M, Goodman E, Davis J, Allan W, Dammann O. Maternal obesity, gestational hypertension, and preterm delivery. The Journal of Maternal-Fetal & Neonatal Medicine. 2010; 1; 23(1):82-8.
- 38. Bhandari S, Raja EA, Shetty A, Bhattacharya S. Maternal and perinatal consequences of antepartum haemorrhage of unknown origin. BJOG. 2014; 121:44-52
- 39. Ken P, Aggrey W, Dalton W, Paul N. Prevalence and factors associated with preterm birth at kenyatta national hospital. BMC pregnancy and childbirth. 2018; 18:107.
- 40. Su RN, Zhu WW, Wei YM, Wang C, Feng H, Lin L. *et al.* Maternal and neonatal outcomes in multiple pregnancy: A multicenter study in the Beijing population. Chronic diseases and translational medicine. 2015; 1(4):197-202.