

Synthesis and characterization of metal complexes of cu (ii) and cd (ii) with poly vinyl alcohol and studied of electrical and optical properties

Annas Al-Sharabi¹, Abdullah M Al-Hussam^{2*}, Sami KS Abdullh³

¹ Assistance professor, Department of Physics, Faculty of Applied Sciences, Thamar University, Yemen

² Associate professor, Department of Chemistry, Faculty of Applied Sciences, Thamar University, Yemen

³ Master Scholar, Department of Chemistry, Faculty of Applied Sciences, Thamar University, Yemen

Abstract

Metal complexes of Poly (vinyl alcohol) (PVA-oxi) with the formula $[M(PVA\text{-oxi})_2(Cl_2)_2]$ [$M = Cu$ and Cd] were prepared using solution cast method. The atomic absorption; IR, UV-Vs spectroscopic techniques, molar ratio and molar conductance as well as the reduced viscosity of them were characterized. It was found that the prepared complexes were obtained from the ligand reaction with metal ions in a DMF solvent were ratio of metal: ligand (1:2) for complex Cu (II) ion and (1:1) for complexes Cd (II) ion. The results proved that the ligand (PVA-oxi) was bidentate ligand coordinated with metal ion through the oxygen atoms of carbonyl and hydroxyl groups of its chain, with an octahedral geometry around the metal ion Cu (II) complex and tetrahedron geometry for Cd (II) complex. The optical properties were examined using UV-Vis spectroscopy. The researchers studied the properties of the absorbance spectra, direct and indirect optical band gap energies of (PVA-oxi) and $[M(PVA\text{-oxi})_2(Cl_2)_2]$ [$M = Cu$ and Cd]. Absorbance spectra, direct and indirect optical band gap energies were studied electrolyte for ligand and the prepared complexes. These band gap energies showed that the connection of the complexes is lower than of the ligand. The electrical conductivity of ligand and the prepared complexes electrolyte samples has been estimated by DC conductivity, which showed that the connection of the complexes was higher than the ligand.

Keywords: pva metal complexes; viscosity; molar ratio; flam atomic; u.v spectrum; ir spectrum; dc conductivity, band gap energies, optical properties

1. Introduction

Polymer materials are of great scientific and technological interest due to their unique optical, electronic, and mechanical properties. Polymer complexes have been given a great deal of interest in the recent years ^[1-3]. Synthesis of polymeric ligand and the selective chelation of specific metal ions is a field of active research ^[4]. The metal ions of polymer complexes have potential applications such as electrolytes ^[5], sensory ^[6], stabilizers ^[7] and semiconducting ^[8]. Polyvinyl alcohol is an important material in view of its wide-scale applications, such as biomaterials, biosensors, electrochemical sensors, membranes with selective permittivity, viscous medium for controlling the crystallization process of salts, for controlled drug delivery or catalytic systems, etc. Polyvinyl alcohol is non-toxic, non-carcinogenic, biodegradable, biocompatible, water-soluble, and non-expensive polymer. It could be also matrix for metal ions or salts in ecological composites ^[9, 10].

PVA is a potential material having a high dielectric strength, good charge storage capacity and dopant dependent electrical properties. It has carbon chain back bone with hydroxyl groups attached to methane carbons. The OH groups can be a source of hydrogen bonds and hence can assist in the formation of polymer complexes ^[11]. It has unique mechanical properties and shows both ionic and electronic conduction ^[12]. When polymers are doped with inorganic salts, they show remarkable change in their structural as well as in electrical properties. Polymer electrolytes containing divalent cations are suitable for electrochemical applications. Recently the PVA has doped

with divalent metal salts like $CuCl_2$, $MnCl_2$ and $MgBr_2$ etc. These materials are used in different applications like magneto-optic data storages, reflective materials, optoelectronic devices, and photovoltaic cells ^[13]. Much has been done to improve the optical properties of polymer via producing new polymer materials through the support of polymers with metals, semiconductors, magnetic and carbon ^[14]. The most important polymer was polyvinyl alcohol (PVA), some of metal complexes of this polymer have been synthesized ^[15- 17]. The option of PVA as a host matrix is motivated by the opportunity to obtain highly transparent polymer materials with good optical properties. Equally, PVA has a carbon chain backbone, with hydroxyl groups attached to the carbon atoms ^[18]. Formed the copper or cadmium doped polyvinyl alcohol which has been used in multidimensional applications in holography optics and mechanically flexible systems ^[19].

In this study, the researchers prepare PVO from PVA as ligand and reactions with Cu and Cd metal salt to form complexes of them and study their electrical properties such as conductivity for ligand and complexes. We also studied the structure and linear optical properties of pure PVA and Cu (II)/ Cd (II) complex of (PVA). Optical properties and parameters like absorbance and optical band gap were investigated

2. Materials and Method

Synthesis and Oxidation of the PVA

Stoichiometric amounts of high purity of polyvinyl alcohol (PVA) (Scharlau, 98%) and metal salts $CuCl_2$, $3H_2O$ and

CdCl_2 , $4\text{H}_2\text{O}$, (Scharlau, 98%) were used. Distilled water was used as solvent. Concentration of hydrogen peroxide (H_2O_2) (Fluka, 99%) used in this work was 50%.

Oxidation of PVA

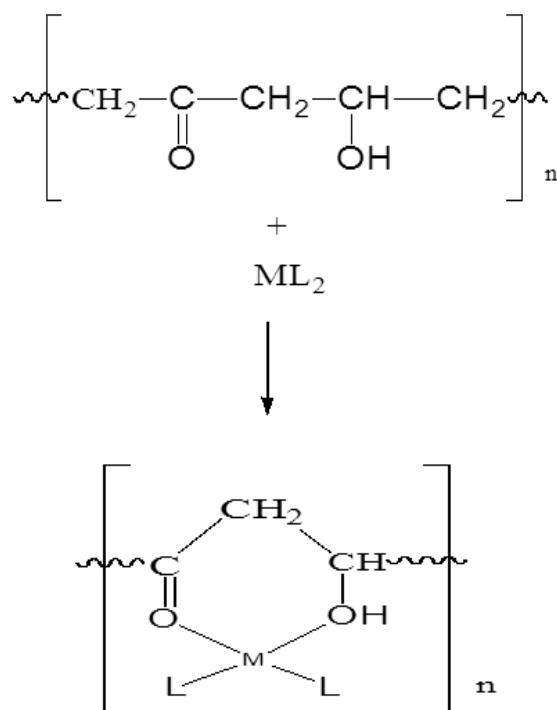
15.2 g (0.2 mmol) polyvinyl alcohol (PVA) with 36000 MW was dissolved completely in 100 ml distilled water as a solvent. Then, 20 ml of hydrogen peroxide (H_2O_2) with concentration = 20% vol was added from dropping funnel under constant stirring for 3h at temperature = 50-80 °C. The mixture was refluxed for 3 h. The homogeneous solutions were evaporated and the oxidized polymer spread by Reutery device and left to dry slowly in oven at 50°C for 24h. Finally, the films were ready to be investigated,

Synthesis of oxidized PVO-Complexes ($[\text{Cu}(\text{PVA-oxi})_2\text{Cl}_2]$ and $[\text{Cd}(\text{PVA-oxi})_2\text{Cl}_2]$)

0.501 g (2 mmol) of oxidized PVA was dissolved in 10 ml DMF, and then 0.2118 g (1 mmol) of metal salt (CuCl_2 , $3\text{H}_2\text{O}$ or CdCl_2 , $4\text{H}_2\text{O}$) in DMF in each case being added at pH 6.7. The mixture was heated under reflux for about 10 h. Colored products were formed in neutral or slightly basic solution. The products were filtered and purified by washing with ethanol, then dried at 50°C in an oven overnight. Finally, the films were ready for calculating the melting point and other characterizations.

Characterizations

The optical transmission and absorption spectra of PVA and PVO-Complexes ($[\text{Cu}(\text{PVA-oxi})_2\text{Cl}_2]$ and $[\text{Cd}(\text{PVA-oxi})_2\text{Cl}_2]$) were recorded using a UV-Vis spectrophotometer (Hitachi U3900 with software of Varian Cary 50). The electrical conductivity measurements of samples were carried out using (conductivity meter and 3540 PH).


3. Results and Discussion

Partial oxidant (PVO) from PVA and hydrogen peroxide at (60-100 °C) was prepared to form a mixture of carbonyl and hydroxyl group in the polymeric chains as shown in scheme (1). Metals Complexes preparations from reaction of (PVA-oxi) and metal ions as shown in scheme (2, 3).

Scheme (1) preparation of PVO from poly vinyl alcohol (PVA)

Scheme (2) preparation of Metal complexes Molar ratio (1:1) ML1 (Metal: Ligand)

Scheme (3) preparation of Metal complexes Molar ratio (1:2) ML2 (Metal: Ligand)

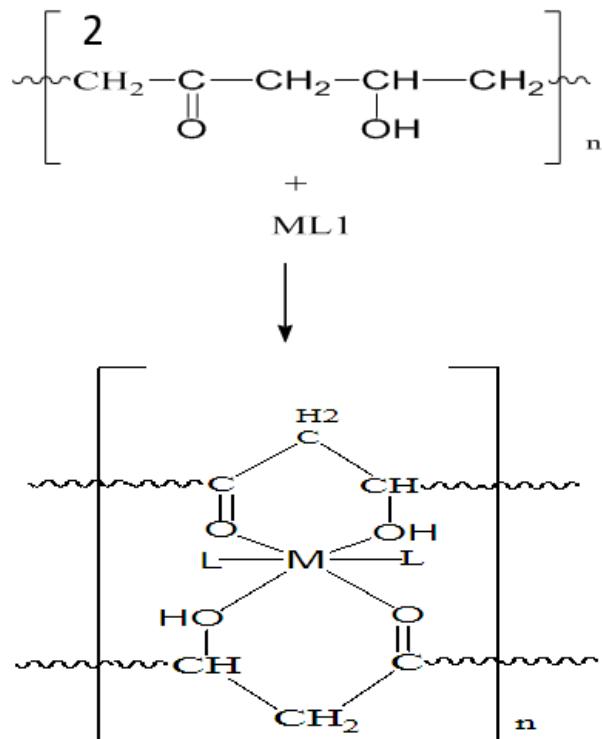


Table (1) shows the physical properties of ligand and metal complexes which show the different of colors between the complexes prepared and ligand and the melting point of all the prepared (PVA-oxi) metal complexes were higher than

360 °C. This indicates that the presence of metal ion

increases the thermal stability of the polymer.

Table 1: Physical properties of ligand and metal complexes

compound	Color	M. P. C°(decom.)	Yield%	red η At 0.5gmdL/
(PVA-oxi)	White-yellow	240	84	0.48
[Cu(PVA-oxi) ₂ Cl ₂]	Yellow-green	>360	73	1.1
[Cd(PVA-oxi)Cl ₂]	Prone-black	>360	81	0.92

Viscosity

Viscosities were measured of all the prepared (PVA-oxi) complexes in DMF as a solvent at 30°C, was measured at 0.5 % concentration. Viscosities of (PVA-oxi) complexes are listed in table (1). The viscosity of ligand and complexes get increased with increasing molecular weight. This is consistent with the literatures [20, 21], so that these results support the proposed molecular formulas.

IR spectrum

Figures (1) shows the bonds absorbency of IR spectrum for each of the ligand and metal complexes. The predominant O-H vibrational band of ligand at 3420 cm⁻¹ is shift towards

the high wave numbers and appeared at 3432 for Cu⁺ complex and 3453 for Cd²⁺ complex. It gives strong indication of specific interactions between the ligand and metal salts. The band of C-OH appeared in the ligand at (1077) cm⁻¹ is shifted towards the high wave numbers and appeared at (1280, 1319) cm⁻¹ for complexes of Cu and Cd respectively. The band of C=O appeared in the ligand at 1740 cm⁻¹ is shifted towards the low wave numbers and appeared at (1705, 1691) cm⁻¹ for complexes of Cu and Cd respectively. The bands of M-O appeared at (519, 440) cm⁻¹ for metal complexes but disappeared in the ligand [22]. Table (2) shows the bonds absorbency of IR spectrum for each of the ligand and metal complexes.

Table 2: IR spectrum of ligand and metal complexes

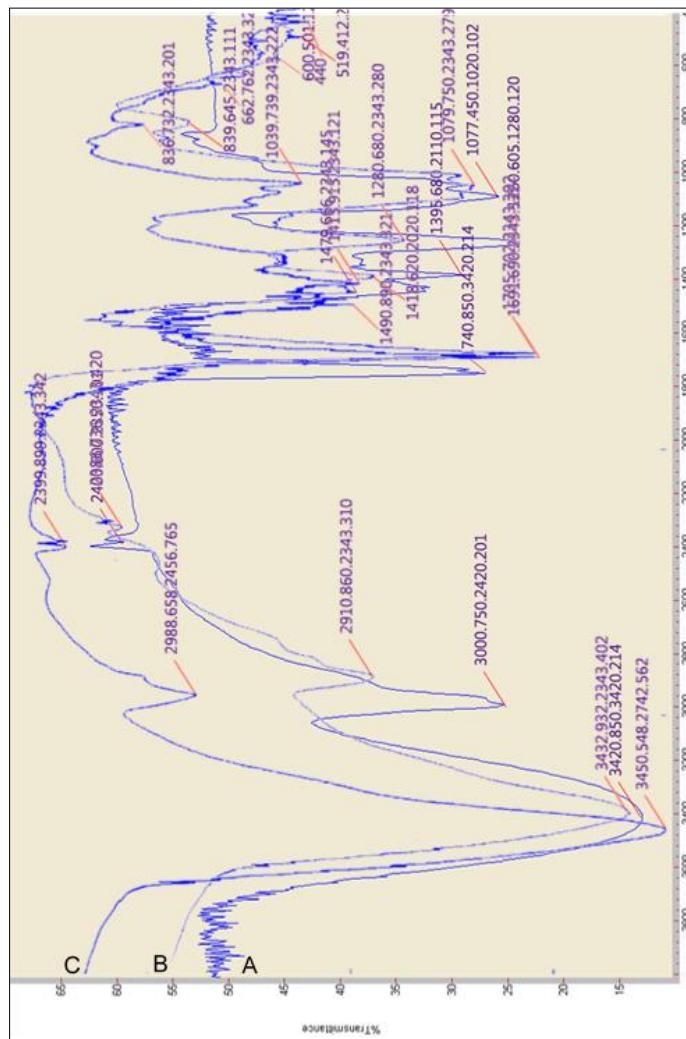
compound	V (OH)	V (C=O)	V (C-OH)	V(C-H)	V (M-OH)	V (M-O)
Ligand (PVA-oxi)	3420	1740	1077	3000	-	-
[Cu(PVA-oxi) ₂ Cl ₂]	3432	1705	1280	2910	1079	519
[Cd(PVA-oxi)Cl ₂]	3453	1691	1319	2988	1039	440

U.V spectrum

Table (3) and Figure (3) show U.V. spectrum for each of the ligand and metal complexes prepared. These show two peaks at 226 nm and this band is attributed to intra ligand π -

π^* transition. Another band of lower intensity appeared near the visible region (335 nm) and this band was attributed to n- π^* .but these bands were shifted toward high wavelength [23, 24].

Table 3: UV -spectrum of ligand and metal complexes


Complex	Band(I) (V ₁)		Band(II) (V ₂)		Band(III) (V ₃)	
	max λ nm	ν_{cm1}	max λ nm	ν_{cm1}	max λ nm	ν_{cm1}
PVA-oxi)(276	36231	335	29850	---	---
[Cu(PVA-oxi) ₂ Cl ₂]	406	24630	885	11299	982	10183
[Cd(PVA-oxi)Cl ₂]	330	30303	635	15748	990	10101

Determine the compositions of the proposed complexes

Molar ratio

Table (4) shows the UV absorption, with the molar ratio M/L of the metal complexes being prepared. Figure (2) shows plots of absorbance against molar ratio of each complex notes. Through these drawings the absorbance increases as the molar ratio increased to a certain point at

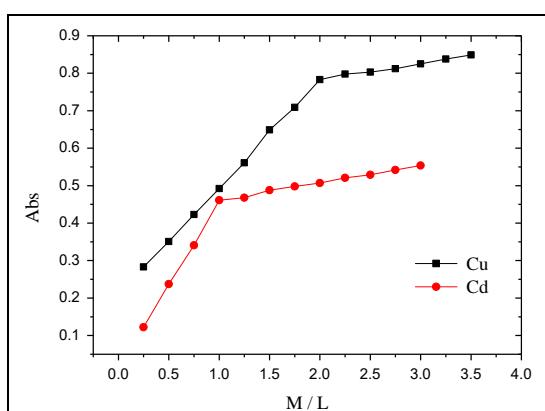

it's the prove absorption with molar ratio. This can be attributed to the stability of the complexes in their solutions. It is clear from our study of curves percentage molar ions elements with legend (PVO) that complexes consisting of 2:1 per mole for ion of copper (II) and 1:1 per mole for ion of cadmium (II).

Fig 1: IR Spectrum for (A) (PVO), (B) Cd (PVO-complex), (C) Cu (PVO-complex)

Table 4: Absorption of complex solutions at the wavelengths corresponding of the molar ratio (ligand: metal) at the molar concentration (1×10^{-5})

M:L	Absorbance of Complex		M:L	Absorbance of Complex	
	Cu(II)	Cd(II)		Cu(II)	Cd(II)
1:0.25	0.283	0.122	1:2.00	0.783	0.507
1:0.50	0.351	0.237	1:2.25	0.798	0.521
1:0.75	0.423	0.341	1:2.50	0.803	0.529
1:1.00	0.492	0.461	1:2.75	0.812	0.542
1:1.25	0.561	0.468	1:3.00	0.825	0.554
1:1.50	0.649	0.488	1:3.25	0.838	-
1:1.75	0.709	0.498	1:3.50	0.849	-

Fig 2: Molar ratio for (1) Cd (PVO-complex), (2)Cu(PVO-complex)

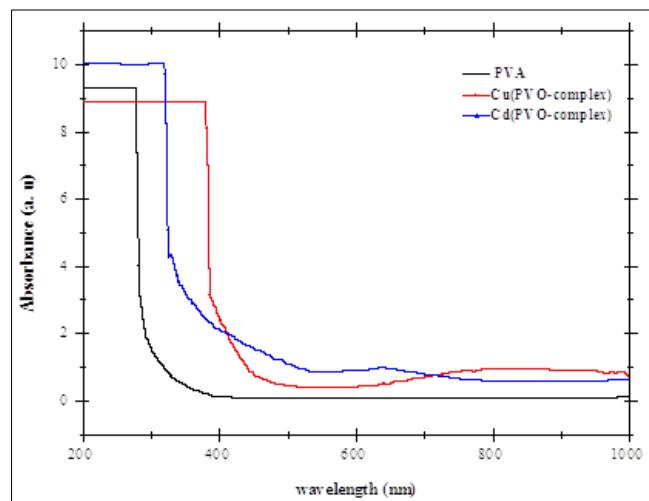
Flam atomic absorption technique

This technique is used to determine the percent of metal in metal complexes proportion comparing them with the calculated ratios theoretically as shown in table (5), which shows the great convergence between the values of theoretical and practical, which confirms the correctness ratios molar of (Ligand: metal) and thus support the proposed formulas of the complexes being prepared

Table 5: Molar conductivity and flame atomic absorption (M%), of metal complexes

NO	Complex	A _m (S.mL ⁻¹ Cm) ⁻²	Metal %	
		In DMF	Calc.	Exp.
2	[Cu(PVA-oxi) ₂ Cl ₂]	7.22	22.8	20.5
8	[Cd(PVA-oxi) Cl ₂]	6.74	43.4	32.1

Electrical Conductivity Molar


Using electrical conductivity of molar solutions is widely used in chemistry of coordinating to know the status of the ionic compound in the solution [25]. The findings of this study, as shown in table (5), prove that the complexes are non-electrolytes in DMF so that it supports the proposed molecular formulas. The values obtained are consistent with the provisions contained in the literature [20].

From analyzing spectrums illustrated above, molar ratio methods, atomic absorption and electrical conductivity molar of legand and metal complexes preparation are compared with the display in the literatures [26]. The ratio

of metal:ligand obtained are (1:2) for both complex of Cu(II) ion provide additional evidence for the approximate octahedral configuration Scheme (3) and (1:1) for both complex of Cd(II), ion provide additional evidence for the approximate square configuration Scheme (2).

Optical properties

The UV-visible absorption spectra of PVA containing and PVO-Complexes ($[\text{Cu}(\text{PVA-oxi})_2\text{Cl}_2]$ and $[\text{Cd}(\text{PVA-oxi})_2\text{Cl}_2]$) were shown in Figure 3. Absorbance spectra of all sample exhibits broad band (200–400 nm) with clear two peaks found at around 276 nm for PVA containing and this band is attributed to ligand π - π^* transition so that it corresponds to the spectral bands of PVA [26-27]. Absorbance spectra of PVO-Complexes ($[\text{Cu}(\text{PVA-oxi})_2\text{Cl}_2]$ and $[\text{Cd}(\text{PVA-oxi})_2\text{Cl}_2]$) showed single peak at around 380 and 320 nm respectively. Another band of lower intensity appeared near the visible region (335 nm). This band was attributed to $n\pi$ - π^* , but these bands were shifted toward higher wavelength. The absorption edge, where a sharp absorption decrease was in the region $200 < \lambda < 450$ nm, red shifted to a lower photon energy (a higher wavelength), which indicates a decrease in the optical band gap as the filler content in the polymer matrix increases [28].

Fig 3: UV Spectrum for (I) (PVO), (II) Cd (PVO-complex), (III) Cu (PVO- complex)

As seen in Figure 3, intensity of the absorbance spectra for $[\text{Cd}(\text{PVA-oxi})_2\text{Cl}_2]$ was the highest. The increase in the absorption intensity and decrease in the optical band gap may be due to a larger absorption increment associated with the charge transfer transition [29] or refers to increase the inter/intra molecular hydrogen bonding [30]. The absorption coefficient α can be determined as a function of wavelength using the formula [31]:

$$\alpha \approx 2.303 \text{ A} / d \quad (1)$$

Where A is the absorbance, d is the thickness of the sample.

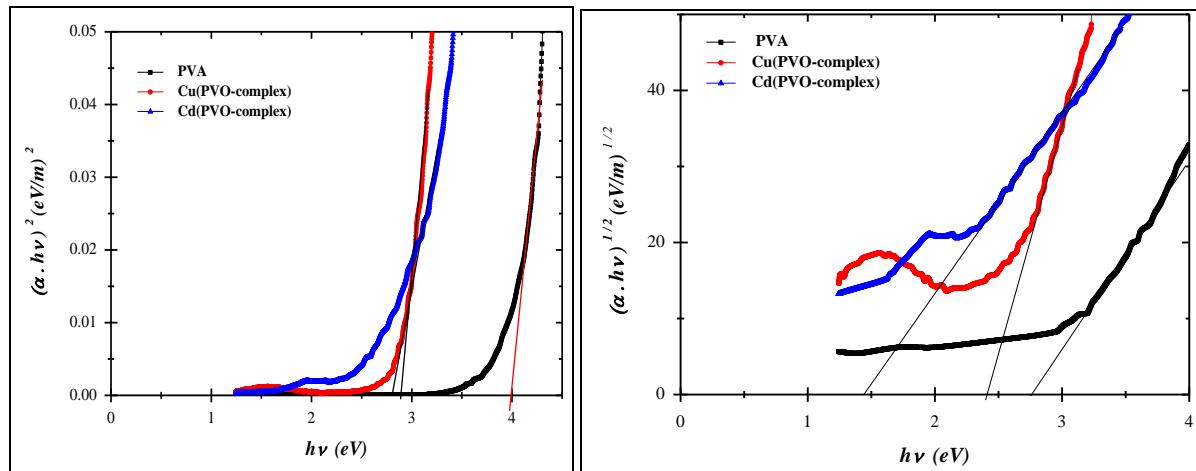
The optical band gap energy E_g of the samples was calculated using Tauc plot method and the fallow Equation [32]:

$$(\alpha \cdot h\nu)^n = B(h\nu - E_g) \quad (2)$$

where $h\nu$ is the photon energy, B is a constant depends on electron and hole effective masses of materials and the exponent n depends on the type of transition: it can be equal to 1/2, 2, 3/2 or 3 for allowed direct, allowed indirect, forbidden direct, and forbidden indirect transitions, respectively. The variation of $(\alpha \cdot h\nu)^2$ (for direct) and $(\alpha \cdot h\nu)^{1/2}$ (for indirect) versus $h\nu$ is plotted and the straight line range of these plots are extended on $h\nu$ axis to obtain the values of optical direct and indirect band gap E_g of the samples as is illustrated in Figure 4. Direct and indirect transition E_g values were obtained for the pure PVA and PVA-complexes are listed in Table 6.

It can be seen from Table 6 that the optical band gap for pure PVA is equal to 3.98 eV, which decreases to 2.88 eV and 2.83 eV for PVA-Cu and PVA-Cd respectively for direct transition. These data coincide with the results of the previous work [33] for a PVA/CuI polymer electrolyte, where the optical band gap for pure PVA was equal to 3.39 eV: it decreases to 2.12 eV for a PVA doped with 10 wt % CuI. The decrease in the optical band gap is an indicator of the change in the structure of the polymer matrix and is associated with the creation of localized states in the band gap [34-35].

Table 6: Optical band gap energy (E_g) for the prepared (I) (PVO), (II) Cd (PVO-complex), (III) Cu (PVO- complex)


sample	E_g (eV)(direct)	E_g (eV)(indirect)
PVA	3.98	2.75
Cu(PVO-complex)	2.88	2.41
Cd(PVO-complex)	2.83	1.43

Electrical properties

The DC conductivity values of the electrolytes are calculated by using the equation [36]:

$$\sigma_{DC} = l / AR_b \quad (3)$$

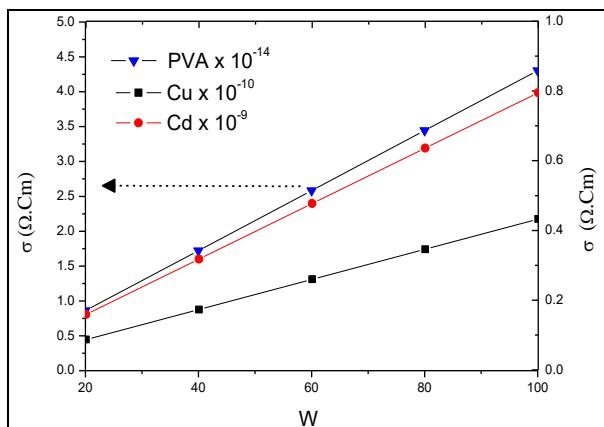

where l is the thickness, A is the area of the electrolyte film and R_b is the bulk resistance of the electrolyte film. The DC resistance against weight for (PVO), Cu-(PVO-complex) and Cd-(PVO-complex) can be discussed as presented in Figure 5. The room-temperature resistance and the conductivity are summarized in Table (7). The room-temperature resistance decreased in metals complexes compounds; however, conductivity increased is compared with (PVA-oxi). The resistivity values indicate variation in the charge carrier's concentration. Conductivity results (Table 7) showed that all samples are semiconductors. This means DC conductivity of PVA has been significantly improved by addition of Cu or Cd.

Fig 4: Optical band gap energy (Eg) for the prepared (I)(PVO), (II) Cd(PVO-complex), (III)Cu(PVO- complex) (a) direct transition band gap, (b) indirect transition band gap

Table 7: The room-temperature resistance, conductivity and activation energy

sample	Wight	Resistant (Ω)	Conductivity ($\Omega.cm$)	Activation energy (eV)
PVA	72	923×10^9	3.1×10^{-14}	0.67
Cu(PVO complex)	277	197×10^6	1.2×10^{-10}	3.61
Cd(PVO-complex)	254	14.3×10^6	2.02×10^{-9}	1.94

Fig 5: Resistance against weight for (PVO), Cu-(PVO-complex) and Cd-(PVO-complex)

According to the thermally activated flux creep model, the dissipated energy in the tail part of the resistivity plot is defined by an Arrhenius-type equation:

$$\rho(H, T) = \rho_0 \exp[-U(H) / k_B T] \quad (4)$$

Where U is the flux pinning energy or activation energy for flux creep that depends on the temperature (T) and magnetic field (H), ρ_0 is the pre-exponential factor or simply the pre-factor, and k_B is Boltzmann constant. The activation energy are summarized in Table (7)..

Conclusions

In this study, two salts of ions of Cu(II) and Cd(II) were prepared from the reaction of the salts with ligand (PVA - oxi). Some physical properties such as melting point MP C° and reduced viscosity were studied for two complexes and the ligand, which showed that the complexes had a high boiling point from ligand they high from 360C°. also reduced, viscosity of the complexes are higher than the ligand. The complexes and ligand were identified using

FTIR technique, which showed that the shift towards the high wave numbers to C-OH and OH bands, and the UV-Visible technique showed shift of two bands ($\pi - \pi^*$, $n - \pi^*$) towards the high wave numbers. We also use the molecular ratio, the flam atomic absorption technique and the molar conductivity method in the recognition of the structure of the complexes and the ratio of the complexes of preparation to ligand they are shown 2:1 ligand to ion complex and structure of ions Cu (II) is octahedral and that the ratio of ligand to ion complexes 1:1 and structure of ions Cd (II) is tetrahedron. The optical of ligand and complexes were investigated. The absorbance spectra of all samples exhibits broad band (200–400 nm) with clear two peaks found at around 276 nm for PVA containing so this band is attributed to ligand $\pi - \pi^*$ transition.. Absorbance spectra of PVO-Complexes $[\text{Cu}(\text{PVA-oxi})_2\text{Cl}_2]$ and $[\text{Cd}(\text{PVA-oxi})_2\text{Cl}_2]$ showed single peak at around 380 and 320 nm respectively. Another band of lower intensity appeared near the visible region (335 nm) so this band was attributed to $n - \pi^*$, but these bands were shifted towards higher wavelength. The absorption edge, where a sharp absorption decrease was in the region $200 < \lambda < 450$ nm, red shifted to a lower photon energy, which indicates a decrease in the optical band gap as the filler content in the polymer matrix increases. The direct optical band gap energies for pure PVA is equal to 3.98 eV, which decreases to 2.88 eV and 2.83 eV for PVA-Cu and PVA-Cd respectively. This decrease in the optical band gap is an indicator of the change in the structure of the polymer matrix and is associated with the creation of localized states in the band gap. The conductivity of two complexes and ligand was studied at room temperature, which showed increased conductivity and decreased the resistance of the prepared ions compared to ligand.

References

1. Burkinshaw SM, Kumar NA. A polyvinyl alcohol after treatment for nylon 6,6. Part 2: Complex formation, Dyes and Pigments. 2008; 77:86-91.

2. Hojo N, Shirai H, Hayashi S. Complex formation between poly(vinyl alcohol) and metallic ions in aqueous solution, *J. Polym. Sci. Polym. Symp.* 1974; 47:299-307.
3. Shoukry AA, Hosny WM. Coordination properties of N,O-carboxymethyl chitosan (NOCC). Synthesis and equilibrium studies of some metal ion complexes. Ternary complexes involving Cu(II) with (NOCC) and some biorelevant ligand, *Cen. Eur. J. Chem.* 2012; 10:59-70.
4. Mukul B, Subrata M. Synthesis and some properties of PVC bonded complexes, *J. Applied polymer Science.* 1989; 33:1243.
5. James SL. Metal-organic frameworks, *Chem. Soc. Rev.* 2003; 32:276-288.
6. Janiak C. Engineering coordination polymers towards applications, *Dalton Trans.* 2003, 2781-2804.
7. MasPOCH D, Ruiz-Molina D, Veciana J. Magnetic nanoporous coordination polymers, *J. Mater. Chem.* 2004; 14:2713-2723.
8. Batten SR, Murray KS. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide, *Coord. Chem. Rev.* 2003; 246(1-2):103-130.
9. Finch CA. *Polyvinyl Alcohol*, John Wiley & Sons, Bristol, Great Britain, 1973.
10. Patachia S, Vasile V, Kulshreshtha AK, *Blends based on poly (vinyl alcohol) and the products based on this* C, Handbook of Polymer blend sand composites., Vol: IV, RAPRA Technology LTD., England, 2003, 285-364.
11. Saroj AL, Singh RK. Studies on ionic liquid 1-ethyl-3-methyl imidazoliu methyl sulphate complexed with PVA, *Phase Transitions.* 2011; 84:231-242.
12. Rajendran S, Mahendran O. Experimental investigations on plasticized PMMA/PVA polymer blend electrolytes, *Ionics.* 2001; 7:463-468.
13. Zihlif A, Faduos AS, Ragosta G. Optoelectrical properties of polymer composite: polystyrene-containing iron particles, *J. Thermoplast. Compos. Mater.* 2012; 26:1180-1191.
14. Sharma GD, Shanap TS, Patel KR, El-Mansy MK. Photovoltaic properties of bulk hetero junction devices based on CuI-PVA as electron donor and PCBM and modified PCBM as electron acceptor, *Mater. Sci. Pol.* 2012; 30:10-16.
15. Heinsoo EM. *Poly vinyl alcoho*. Uch. Khim, 2nd Russ., c.f. chem. Abs. 1977; 89:75816.
16. Carrado A, Thiagarajan KP, Elder DL. Poly vinyl alcohol-clay complexes formed by direct synthesis, *Clays and clay minerals.* 1996; 44(4):506-514.
17. Al-Hussam Abdullah M, Al-Sharabi Annas, Abdullh Sami KS. Synthesis and Characterization same of metalions (II) complexes of poly vinyl alcohol and studied some physical properties, *Al-Baydah University Journal for Research (BUJR).* 2019; 1:79-86.
18. Soliman TS, Vshivkov SA. Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films, *Journal of Non-Crystalline Solids.* 2019; 519:119452.
19. Raju CL, Rao JL, Reddy BCV, Brahman KV, Thermal and IR. Studies on copper doped Poly vinyl alcohol, *Bull. Mater. Sci.* 2007; 30(3):215-218.
20. Iraqi Nada, Ali Al-Najjar. Preparation and identification of Some Pva -Metal Complexes, *Journal of Science.* 2009; 50(3):271-278.
21. Saeed Rehana, Masood Summyia, Zainul Abdeen. Ionic Interaction of Transition Metal Salts with Polyvinyl Alcohol-Borax-Ethyl Acetate Mixtures, *International Journal of Science and Technology.* 2013; 3(2):132.
22. Yoe JH, Jones AL. Colorimetric Determination of Iron with Disodium-1,2-dihydroxybenzene-3,5-disulfonate, *Ind. Eng. Chem., Anal.* 1944; 16:11.
23. Hosny M Wafaa, Khalaf-Alaa A Perihan. Potentiometric Study and Biological Activity of Some Metal Ion Complexes of Polyvinyl Alcohol (PVA), *Int. J. Electrochem. Sci.* 2013; 8:1520-1533.
24. Iskander MF, Khalil TE, Waase R, Haase W, Savoboda I, Fuess H. Synthesis, reactivity and magneto chemical studies on copper(II) complexes derived from N-salicylideneacetyl hydrazines X-ray structure of [mononitratoOO⁻(-1) (N-acylideneacetobenzoyl hydrazine) ONO(-1)] copper(II) monohydrate, *Polyhedron.* 2000; 19:949-958.
25. Skoog DA. *Fundamentals Analytical Chemistry*, 6th. ed, New York. 1988; 87:24411.
26. Elkomy GM, Mousa SM, Mostafa HA. Structural and optical properties of pure PVA/PPY and cobalt chloride doped PVA/PPY films, *Arab J Chem.* 2016; 9:S1786-S1792.
27. Abdelaziz M, Abdelrazek EM. Effect of dopant mixture on structural, optical and electron spin resonance properties of polyvinyl alcohol, *Physica B.* 2007; 390:1-9.
28. Aziz SB, Ahmed HM, Hussein AM, Fathulla AB, Wsw RM, Hussein RT. Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites, *J. Mater. Sci. Mater. Electron.* 2015; 26:8022-8028.
29. Mora ES, Barojas EG, Rojas ER, et al. Morphological, optical and photocatalytic properties of TiO₂-Fe₂O₃ multilayers, *Sol Energ Mat Sol.* 2007; C91:1412-1415.
30. Bhajantri RF, Ravindrachary V, Harisha A, et al. Microstructural studies on BaCl₂ doped poly (vinyl alcohol), *Polymer.* 2006; 47:3591-3598.
31. Yoffe AD. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites zero-dimensional systems and some quasi-two-dimensional systems, *Adv Phys.* 1993; 42:173-262.
32. Ahmed Abdullah Ahmed Ali, Al-Hussam Abdullah Mohammed, Abdulwahab Abdu Mohammed, Ahmed

Ahmed Nasser Ahmed Ali. The impact of sodium chloride as dopant on optical and electrical properties of polyvinyl alcohol, Materials Science. 2018; 5(3):533–542.

33. Sheha E, Khoder H, Shanap TS, El-Shaarawy MG, El Mansy MK. Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymerelectrolyte for photovoltaic cells, Optik (Stuttg), 2012, 123.

34. Ebnalwaled AA, Thabet A. Controlling the optical constants of PVC nanocomposite films for optoelectronic applications, Synth. Met. 2016; 220:374–383.

35. Aziz SB, Hussein S, Hussein AM, Saeed SB. Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder, Int. J. Met, 2013.

36. Hemaa M, Selvasekerapandian S, Sakunthala A, *et al.* Structural, vibrational and electrical characterization of PVA–NH₄Br polymer electrolyte system, Physica B. 2008; 403:2740–2747.

37. Taleb T Al-Nahary, Abdullah M Al-Hussam, Gamil MS Qasam. Characterization and Viscometric Study of Poly (vinyl alcohol) / Poly (ethylene glycol) Blends. International Journal of Chemistry Studies, Volume 3, Issue 4, 2019, Pages 22-26.