

Comparison of antimicrobial activity and thin layer chromatography profile of ethyl acetate fraction of leaves and stem of *Cordia africana* (Boraginaceae)

Emtinan A Alhadi, Hassan S Khalid, Muddathir S Alhassan, Haider Abdal Gader, Ahmed S Kabbashi,

Eltayeb Fadul Alla

Medicinal and Aromatic Plants and Traditional Medicine Research Institute (MAPRI), National Center for Research, Khartoum, Sudan.

Abstract

Cordia africana Lam., belongs to the family Boraginaceae, is native to Angola, the Democratic Republic of Congo, Djibouti, Eritrea, Ethiopia, Ghana, Guinea, Kenya, Malawi, Mozambique, South Africa, Sudan, Tanzania, Uganda, Zimbabwe, Saudi Arabia and Yemen (Warfa, 1988; Friis, 1992). Chloroform and aqueous fractions of leaves and stems *C. africana* methanolic were devoid of any activity against all organisms used in this study. Ethyl acetate fraction of leaves showed activity ranged between 13 -21 mm. The highest activity was against *S. aureus* while the lowest activity was against *C. albicans*. Stems ethyl acetate fraction showed activity between 14 -26 mm against all organisms used. The highest activity was against *C. albicans* (26 mm) and the lowest activity was against *A. Niger* and *E. coli*. Thin layer Chromatography of both leaves and stem ethyl acetate fractions was carried out. Different spots with different RF values and colors were observed when plates inspected under UV, 366 nm and sprayed with Para Anisaldehyde.

Keywords: Comparison of Antimicrobial Activity, and Thin Layer Chromatography Profile.

1. Introduction

Antibacterial activities tewolde *et al.* (2013) studied the total phenols of *C. africana* dry and fresh fruits, and the results were 2317.0 and 264.1mg respectively. Due to the lack of suitable land, most of the forest plantations in Eritrea and Ethiopia are carried out in adverse environments. In Ethiopia, it is widespread in Broadleaved Afromontane Rain Forests, Undifferentiated (Dry) Afromontane Forests ('mixed *Podocarpus* forest') and in reverie forests as well as in the western lowlands (Friis, 1992). *C. africana* is aindigenous tree that farmers deliberately preserve on their farm, because it improves soil fertility (Mugendi and Nair, 1997). Adverse environments are sites that are marginal for growing economic crops due to their extreme climate (e.g. low rainfall, frost etc.) and poor soil conditions (e.g. nutrient deficient, acid, alkaline soils) (Zobel and Van Buijlen 1989; Evans and Turnbull, 2004). Tewolde *et al.* (2013) studied the antioxidant activity of *C. africana* fruits and it showed weak antioxidant. Whereas, Brime shrimp lethality was domenestrated by Mainen *et al.* (2007) and reveled LC50 at 211.4ug/ml. Hussein (2005) studied the activity of different extracts from *C. africana* leaves, bark and roots from different location of Sudan against termite. Ethyl acetate extracts of the different parts showed highest activity. Shelly *et al.* (2012) reported that the leaves pitch showed anti-malarial activity, anti-tuberculosis. Emtinan, *et al.*, (2015). The present study was conducted to investigate the antimicrobial activity and phytochemical screening for different parts (leaves, stem, park and fruit) of *C. africana*. The extracts of *C. africana* was screened for its antimicrobial activity against four standard bacteria, two Gram-positive bacterial strains (*Bacillus subtilis* and *Staphylococcus aureus*), two Gram-negative bacterial strains (*Escherichia coli* and *Pseudomonas aeruginosa*) and

two fungal strains (*Apergillus Niger* and *Candida albicans*) using the cup plate agar diffusion method. Emtinan, *et al.*, (2015) The present study was conducted to investigate the *in-vitro* antioxidant (DPPH assay) and cytotoxic (brine shrimp) of different parts (leaves, stem, park and fruit) of *C. africana*, the different parts of *C. africana* was screened for antioxidant screening for their free radical scavenging properties using 2.2Di (4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH), while propyl galate was used as standard antioxidant and screened for their cytotoxicity using brine shrimp. The inhibition percentage of antioxidant against (DPPH assay) varied from (37 ± 0.10 to 95 ± 0.00% RSA). The test of cytotoxicity was done using brine shrimp lethality, verified the toxic extracts except stem by water and leaves by methanol and water extracts (Benhura and Chidewe, 2011) studied the content of polysaccharides in *C. africana* fruits. The yield percentages of polysaccharides ranged between 1.1 – 2 %.

2. Materials and Methods

Plant materials: Plant samples were collected from its natural habitat from Algalabat (East of Sudan), taxonomically identified and authenticated by Dr. Haidar Abdelgadir at the Herbarium of Medicinal and Aromatic Plants and Traditional Medicine Research Institute (MAPTMRI) where the voucher specimen has been deposited for future work

Preparation of the standard bacterial suspensions

One ml aliquots of a 24-hours broth culture of the test organisms were aseptically distributed onto nutrient agar slopes and incubated at 37 °C for 24 hours. The bacterial growth was harvested and washed off with 100 ml sterile normal saline, to produce a suspension containing about 10^8 - 10^9 colony forming

units per ml. The suspension was stored in the refrigerator at 4 °C till used. The average number of viable organisms per ml of the stock suspension was determined by means of the surface viable counting technique (Miles and Misra, 1938; Collee *et al.*, 1996). Serial dilutions of the stock suspensions were made in sterile normal saline solution and 0.02 ml volumes of the appropriate dilution were transferred by micropipette to the surface of dried nutrient agar plates. The plates were allowed to stand for 2-hours at room temperature for the drops to dry, and then incubated at 37 °C for 24 hours. After incubation, the number of developed colonies in each drop was counted. The average number of the colonies per drop (0.02ml) was multiplied by 50 and by the dilution factor to give the viable count of stock suspensions, expressed as the number of colony forming unit per ml of suspension. Each time of fresh stock suspension will be prepared, all the above experimental condition will be maintained constant so that suspensions with very close viable count would be obtained.

Preparation of standard fungal organisms

The fungal standard cultures were obtained from the department of Microbiology and Parasitology, Medicinal and Aromatic Plants and Traditional Medicinal Research Institute, Khartoum and were maintained on Sabouraud dextrose agar, incubated at 25°C for 4 days. The fungal growth were harvested and washed with sterile normal saline and finally suspended in 100 ml of sterile normal saline and the suspension was stored in refrigerator till used.

Thin Layer Chromatography

Thin layer chromatography was carried out for the ethyl acetate fractions of stem and leaves, which showed potent activities according the method described by (Stalh 1969)

Stationary phases

The stationary phases used were the following:

- A) Silica gel type G
- B) Silica gel type GF254

Mobile phases

The following mobile phases were tested:

Table (1): Antimicrobial activity of leaves and stem of *C. africana* fractions of methanolic extracts against Standard Organisms using (50 mg/ml):

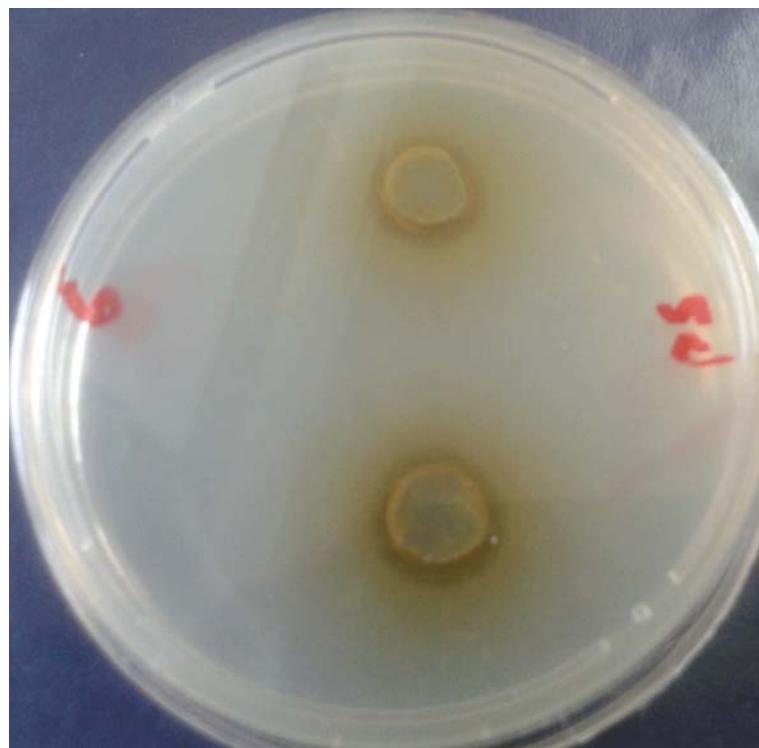

Part used	Standard tested organisms* /M.D.I.Z (mm)**					
	<i>B. s</i>	<i>S. a</i>	<i>E. c</i>	<i>Ps.a</i>	<i>A. n</i>	<i>C. a</i>
Stem	17	21	15	17	15	13
Leaves	19	18	14	15	14	26

Table (2): RF values of separated spots of stem ethyl acetate fraction

Spot	UV 254 nm		UV 366 nm		Para-anizalsehyde		Suggestion
	RF value	Colour	RF value	Colour	RF value	Colour	
1	0.4	Fluoresce	0.4	Fluoresce	0.2	Pale violet	Triterpenes
2	0.5	Fluoresce	0.5	Fluoresce	0.4	Pale violet	Triterpenes
3	0.6	Fluoresce	0.6	Fluoresce	0.5	Violet	Triterpenes
4	0.7	Fluoresce	0.7	Fluoresce	0.9	Blue	Phenol
5	0.8	Fluoresce	0.8	Fluoresce	-	-	-
6	0.9	Fluoresce	-	-	-	-	-

Table (3): RF values of separated spots of leaves ethyl acetate fraction

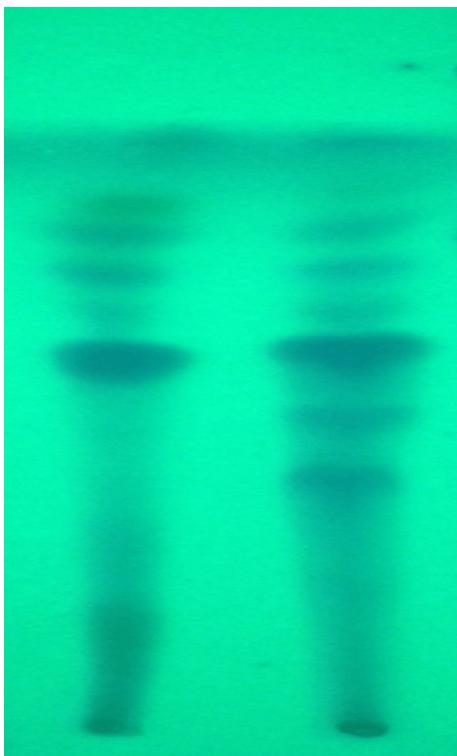

Spot	UV 254 nm		UV 366 nm		Para-anizalsehyde		Suggestion
	RF value	Colour	RF value	Colour	RF value	Colour	
1	0.4	Fluoresce	0.4	Fluoresce	0.3	Gray	Sugar
2	0.5	Fluoresce	0.5	Fluoresce	0.4	Pale violet	Triterpenes
3	0.6	Fluoresce	0.6	Fluoresce	0.5	Violet	Triterpenes
4	0.7	Fluoresce	0.7	Fluoresce	0.7	Pale violet	Triterpenes
5	0.8	Fluoresce	0.8	Fluoresce	0.8	Green	Sterols
6	-	-	-	-	0.9	Blue	Phenol

Plate 1: Inhibition zones of ethyl acetate fraction of stems methanolic extract against *Pa. s.*

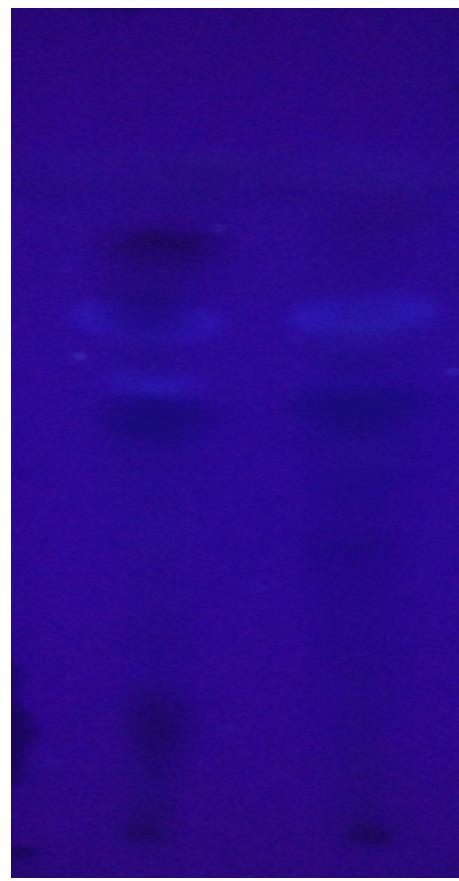

Plate 2: Inhibition zones of ethyl acetate fraction of stems methanolic extract against *S. a.*

Plate 3: TLC Silica gel (GF₂₅₄ nm) plate showing ethyl acetate fraction of leaves and stems methanolic extracts using Toluene: Ethyl acetate: Formic acid solvent system (48: 60: 6) under UV ₂₅₄ nm.

Plate 4: TLC Silica gel (GF₂₅₄ nm) plate showing ethyl acetate fraction of leaves and stems methanolic extracts using Toluene: Ethyl acetate: Formic acid solvent system (48: 60: 6) and Para Anisaldehyde spray reagent.

Plate 5: TLC Silica gel (GF₂₅₄ nm) plate showing ethyl acetate fraction of leaves and stems methanolic extracts using Toluene: Ethyl acetate: Formic acid solvent system (48: 60: 6) under UV ₃₆₆ nm.

4. Discussion

Antimicrobial activity of Leaves and stems fractions

Methanolic extracts of leaves and stems, were subjected to liquid – liquid fractionation with chloroform and ethyl acetate and water. Antimicrobial activity of all fractions were carried out. Diameters of inhibition zones for different fractions against standard organisms are shown in Table (1). Chloroform and aqueous fractions of both a leaves and stems methanolic were devoid of any activity against all organisms used in this study. Ethyl acetate fraction of leaves showed activity ranged between 13 -21 mm. The highest activity was against *S. aureus* while the lowest activity was against *C. albican*. Stems ethyl acetate fraction showed activity between 14 -26 mm against all organisms used. The highest activity was against *C. albicans* (26 mm) and the lowest activity was against *A. Niger* and *E. coli* (Plates 1-2). Thin layer chromatography was done using two types of silica gel (G and GF₂₅₄ nm) and many mobile phases were tested. The best separation was cleared on silica gel (GF₂₅₄ nm) and mobile phase (Toluene: Acetic acid: Ethyl acetate) (48: 4: 60). Leaves fraction showed the presences of five fluorescence spots with different RF values when inspected under UV lamps (254 and 366 nm). Plated after sprayed with Para anizaldehyde spray reagent gave six spots, RF values of separated spots ranged between 0.3 to 0.9 and the colors were gray, violet, bale violet, green and blue. Colors of separated spots indicate that, fraction may contains triterpenes, sterols, sugars and phenols. Stem ethyl acetate fraction showed the presences of five fluorescence spots with different RF values

when inspected under UV lamps (254 and 366 nm). Plated after sprayed with Para anizaldehyde spray reagent gave four spots, RF values of separated spots ranged between 0.4 to 0.9 and the colors were gray, violet, bale violet and blue. Colors of separated spots indicate that, fraction may contains treterpens, sugars and phenols. We can say that there were similar compounds (having the same RF values and color) presences in the stem and leaves fraction and this is may caused the activity of both of them.

5. Conclusion

These study from the result it can be concluded that the identified compounds may have many applications like antimicrobial, anticancer and anti-inflammatory. treatment of bacterial and fungal *in vitro* several infections disease.

6. Acknowledgements

We are grateful to Medicinal and Aromatic Plants and Traditional Medicine Research Institute (MAPTMRI). National Center for Research. Khartoum, Sudan.

7. References

1. Alhadi EA, Khalid HS, Alhassan MS, Kabbashi AS, Noor MO. Antimicrobial and Phytochemical Screening of *Cordia Africana* in Sudan. *World Journal of Pharmaceutical Research.* 2015; 4(3):257-269.
2. Alhadi EA, Khalid HS, Alhassan MS, Ali AA, Babiker SG, Alabdeen EMZ, Kabbashi AS. Antioxidant and cytotoxicity activity of *Cordia africana* in Sudan. *Adv Med Plant Res,* 2015; 3(2):29-32.
3. Benhura MAN, Chidewe C. (.) Characterization of polysaccharides materials that is isolated from the fruits of *Cordia abyssinica*. *African Journal of Biochemical Research.* 2011; 5(3): 95-101.
4. Collee JG, Barrie PM, Andrew GF, Anthony S. *Practical Medical Microbiology. Specimen Collection, Culture Container and Media.* 14th editions Singapore: Longman Singapore publisher Ltd, section A, 1996; 5: 95-109.
5. Evans J, Turnbull J. *Plantation forestry in the tropics: the role, silviculture and use of planted forests for industrial, social, environmental and agroforestry purposes.* 3rd Edition. Oxford University Press. Oxford, UK. 467: 0-19-852994-5. 2004
6. Friis I. *Forests and forest trees of northeast tropical Africa.* Her Majesty's Stationery Office, London, 1992.
7. Hussein AH. Effect of Some Botanical and Chemical preservatives against Termite *Macrotermes bellicosus* (Smeath.) in Preserving Some Sudanese Timbers. M.Sc. Degree. Sudan University of Science and Technology, Khartoum, Sudan, 2005.
8. Mainen JM, Carolien JP, van den B, Omar JMH, Zakaria HM, Ramadhani OS et al. Brine Shrimp Toxicity Evaluation of Some Tanzanian Plants used Traditionally for the Treatment of Fungal Infections. *African Journal of Traditional, Complementary and Alternative Medicine* 2007; 4(2):219-225.
9. Miles AA, Misra SS. The estimation of the bactericidal power of the blood. *Journal of Hygiene,* 1938, 38:732.
10. Shelly M, Erik G, Michelsaint J, Victor N, Angelique T, Marie-claude B et al. Unusual feeding behavior in wild great apes, awindow tounder stand origins of self-medication in humans; Role of sociality and physiolog on learning process. *Physiology & Behavior,* 2012; 105:337-349.
11. Tewolde-Berhan S, Remberg SF, Abegaz K, Narvhus J, Abay F, Wicklun T. Ferric reducing antioxidant power and total phenols in *Cordia africana* fruit. *African Journal of Biochemistry Research.* 2013; 7(11):215-224.
12. Warfa AM. *Cordial (Boraginaceae) in NE tropical Africa and tropical Arabia* Ph.D Dissertation. Uppsala, 1988, 78.
13. Stalh E. *Thin layer Chromatography.* Firisted Edition. Springer VerLage. New. Yak P, 1969, 200-272.