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Abstract 
The Research involves the hypothesis study of algorithms design for tuned mass dampers use in smart 
buildings for damping out earthquake and wind vibrations. Recent researches are done in the field of 
modifying tuned mass damper to improvise the reaction time and response range of the damper system. 
With the help of high end sensors an machine learning algorithm can be hypothesized that can help in 
developing self-learning damping system that utilizes the raw data from test vibration caused by wind loads 
and small scale earthquakes with well-defined and deeply studied vibration systems. 
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1. Introduction 
The design of gyroscope is described below for the smart damper to collect the raw data 
collection of the machine learning data. Gyroscope is designed to have controllable axis of 
rotation using hydraulic jack system. The resultant of angular momentum caused by wind with 
the gyroscopic angular momentum thus can be controlled. The higher value of M1 will reduce 
the angle made by the resultant angular momentum with the vertical. A set of such gyroscopes 
with high moment of inertia can be programmed to balance out any angular momentum dis-
balance, either by wind load or by earthquake. A combination of such variable axis flywheel 
gyros can together damp any kind of vibration in the structure of installation. Above figure 
shows a gyroscope subjected to high wind loads. The M1 represents the flywheel angular 
momentum, while M2 represents the wind angular momentum by the Wind Load-F1. The 
resultant caused by these two combinations is inclined at an angle from the vertical axis. Z1 
represents the moment of inertia of the flywheel. W1 is the anticlockwise angular velocity of the 
flywheel. Due to rotation kinetic energy an angular momentum M1 is induced in the gyroscope. 
This axis of rotation is now with an extra inertia or resistance towards any external force. 
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2 Raw Interpretation Mechanisms 
 

 
 

The Raw data of the amplitude vibrations caused by well-
defined wind load is collected as the raw data for the machine 
learning platform. The following shown algorithm 
methodologies are involved in the processing outline of the 
vibrational data from the self-stabilizing tuned mass damper.  
 
3. Modes of Vibrations  
 

 
 

Above shown is the vibrational modes collected by a raw data 
collecting device that calculates the behavior of the structures 
in an imposed vibrating load condition. The modes can be 
defined by calculating the relative amplitudes of the 
vibrations. The raw data collection is represented and 
processed in the form of relative amplitudes and the self-
stabilizing logics of the damper is recorded for a well-studied 
and simplified vibration i.e. wind load. The relative behavior 
of the damper that is self-stabilizing in its nature can generate 
a fuzzy logic that will help in generating algorithms for 
machine learning process.  
  

4. Non Linear Raw Data  
In general, linear procedures are applicable when the structure 
is expected to remain nearly elastic for the level of ground 
motion or when the design results in nearly uniform 
distribution of nonlinear response throughout the structure. As 
the performance objective of the structure implies greater 
inelastic demands, the uncertainty with linear procedures 
increases to a point that requires a high level of conservatism 
in demand assumptions and acceptability criteria to avoid 
unintended performance. Therefore, procedures incorporating 
inelastic analysis can reduce the uncertainty and conservatism.  
This approach is also known as "pushover" analysis. A pattern 
of forces is applied to a structural model that includes non-
linear properties (such as steel yield), and the total force is 
plotted against a reference displacement to define a capacity 
curve. This can then be combined with a demand curve 
(typically in the form of an acceleration-displacement 

response spectrum (ADRS)). This essentially reduces the 
problem to a single degree of freedom (SDOF) system.  
 
5. Unsupervised machine learning  
Unsupervised learning typically is tasked with finding 
relationships within data. There are no training examples used 
in this process. Instead, the system is given a set data and 
tasked with finding patterns and correlations therein. The use 
of Principle Component Analysis is described in the machine 
learning algorithms to be used; Principal component analysis 
(PCA) is a statistical procedure that uses an orthogonal 
transformation to convert a set of observations of possibly 
correlated variables into a set of values of linearly 
uncorrelated variables called principal components. The 
number of principal components is less than or equal to the 
number of original variables. This transformation is defined in 
such a way that the first principal component has the largest 
possible variance (that is, accounts for as much of the 
variability in the data as possible), and each succeeding 
component in turn has the highest variance possible under the 
constraint that it is orthogonal to the preceding components. 
The resulting vectors are an uncorrelated orthogonal basis set. 
The principal components are orthogonal because they are the 
eigenvectors of the covariance matrix, which is symmetric. 
PCA is sensitive to the relative scaling of the original 
variables.  
  
6. Seismic Vibration Modes Algorithm  
Seismic load on a three storied structure is analyzed to 
calculate the vibrational modes of the structure. The accurate 
calculate of these modes over time need to be calculated 
beforehand the sensors to retract the structure using the 
gyroscopic tuned mass damper. Complex algorithms are 
required to simplify the amplitude variation of structure to 
damp it efficiently. An algorithm of Mode calculation for 
seismic loads m1, m2 and m3 for three floors is described 
below.  

 
Damping Forces Free Body Diagram 
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The Basic algorithm in terms of double differential equation 
of amplitude u is shown above. The modes of the vibrations 
can be calculated by using the differential matrix of the 
lambda values and angular frequencies value. 
Substituting the value of k1, k2 and k3 ask(eq.) and taking the 
lambda values as A1,A2 and A3. 
 
6.1 The First Vibrational Mode Algorithm: 

 

 
 
6.2 Mode 1 Amplitude Calculation  

 
Similarly other two mods can be found by using Lambda 
value variation in above equation as A2 and A3. 
A11=1;  for relative amplitude calculation. 
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