To study significance of CSF C-reactive protein and ADA in meningitis

Raj R Sharma, Hemant Kumar Jain, Sanjay Dhawale, Rakesh Gaharwar, Omprakash Jatav

Abstract
Background – to study significance of CsF C-Reactive Protein And Ada In Meningitis we done this study.

Material and methods – total of 100 patients of meningitis admitted in department of medicine we included with specific inclusion and exclusion criteria and with ethical approval.

Results – CSF CRP was significantly associated with pyogenic meningitis and raised with higher cell count, higher protein levels and lower CSF to blood glucose level, while CSF ADA was significantly raised in tubercular meningitis and higher CSF ADA levels were present in patients with higher cell count, and higher protein levels but no correlation was present between the ratio of CSF and blood glucose.

Conclusion – CRP could be used as a marker of Pyogenic Meningitis and ADA for Tubercular meningitis.

Keywords: Meningitis, Tubercular Meningitis, Pyogenic Meningitis, C-reactive protein, Adenosine Deaminase.

Introduction
Acute infections of central nervous system are among the major syndromes which are the cause of morbidity and mortality, we have to diagnose these conditions early, and with the help of best decisions and treatment life of these patients could be saved1. These syndrome include acute bacterial meningitis, viral meningitis, encephalitis, focal infections such as brain abscess and subdural empyema. meningitis could be –1bacterial, 2-tubercular,3viral,4-fungal,5-spirochete 6-parasitic. The etiological diagnosis of meningitis remains a problem in clinical practice as csf biochemical analysis & cellular response often overlap. Thus there is a need of rapid & etiological diagnosis of meningitis for better clinical outcome. tests like pcr & elisa are although helpful but are costly, not easily available, and not easily performed. In such circumstances the determination of csf crp and csf ada appears to provide a new dimension to specific diagnosis of meningitis. C-reactive protein is an acute phase reactant of “pentraxin” group of family, discovered in 1930 by tillet et al2. It is synthesized exclusively in liver and is secreted in large quantities within 6 hrs of an acute inflammatory stimulus in serum or fluids associated with the affected tissues. It is a very sensitive marker of inflammation and identifies those patients whose inflammatory system responds most actively to the stimuli. Raised CSF CRP level in meningitis is due to passive diffusion across the highly inflamed meninges. hence increased serum CRP levels signify acute phase response, thus increased CSF CRP signifies meningeal involvement. CSF CRP testing appears to be an attractive option for rapid diagnosis of pyogenic meningitis and hence many studies have been done to evaluate this role of csf crp3. Acid-fast staining of csf sediment is the most rapid method for detection of mycobacteria, but this method lacks sensitivity. The diagnostic reference standard, isolation of mycobacterium tuberculosis from csf samples, is insufficiently timed (it requires 1-4 weeks) to aid clinical judgement with respect to treatment, and this method is insensitive if large amount of csf are not used.4 The use of polymerase chain reaction (PCR) to detect mycobacterium tuberculosis specific DNA may be of potential value. However, the facilities to perform the test are not available in all laboratories and many tests are not affordable because of its high cost. Adenosine deaminase (ADA) is an enzyme of purine catabolism, catalyzing hydrolytic deamination of adenosine to inosine. detection of high level of ada has shown promising results in the diagnosis of
Tuberculous pleural, peritoneal and pericardial effusion. Thus the present study has been designed to evaluate the diagnostic utility of CSF CRP and CSF ADA levels in clinically diagnosed cases of meningitis. An attempt will further be made to correlate these findings with the conventional biochemical & cytological parameters.

Aims and Objectives
1. To study CRP and ADA level in CSF in patient of meningitis.
2. To compare CRP and ADA level in CSF in pyogenic meningitis/TBM and viral meningitis.
3. To correlate the clinical significance and prognosis with CRP and ADA level in different type of meningitis.
4. To assess the correlation of CSF CRP and CSF ADA with conventional diagnostic parameters of meningitis (CSF cell count, proteins and glucose).
5. To calculate diagnostic sensitivity and specificity of CSF CRP in pyogenic meningitis and CSF ADA in TBM.

Material and Methods
A total of 100 patients of suspected meningitis admitted in Department of Medicine and neurology, G.R. Medical College, Gwalior (M.P.) during Nov. 2012 to Nov. 2013 were taken for study. **Inclusion criteria** - Age > 18 yrs and clinical features of Pyogenic meningitis and, 2- CSF Analysis 1-Pleocytosis > 10 to 10,000 cells/mm3, neutrophils predominate, 2-Protein > 45 mg/dl, 3-Sugar < 40 mg/dl. Inclusion criteria for TBM- Clinical features being the insidious onset of symptoms of meningitis, signs of meningeal irritation and presence of focal neurological deficits. The CSF analysis showing pleocytosis of 10-500 cells/mm³ predominantly lymphocytes, protein >45 mg/dl, sugar<40 mg/dl or <40% of blood glucose concentration. Neuroimaging showing evidence of meningeal enhancement, basal exudates or tuberculoma were supportive. For Viral meningitis - Viral meningitis based on clinical and CSF laboratory findings of lymphocytic pleocytosis of 25-500 cells/mm³, protein 20-80 mg/dl, and normal sugar. **Exclusion criteria** 1-Age < 18 yrs, 2-Patients with acute infections at sites other than the central nervous system, 3-Patient in whom lumbar puncture was contraindicated 4-Patient with severe hepatic dysfunction 5-Fungal meningitis 6-Contraceptive use 7-Severe dyslipidemia 8-Steroi

Results
Out of the 100 cases, 16 cases belonged of age group less than 20 years, 45 patients belonged to age group of 21-40 years; 23 belonged to age group of >60 years. Most number of patients belonged to the age group of 21-40 years. In TBM 23 patients (46.93%), in Pyogenic Meningitis 14 patients (46.66) and in Viral Meningitis (38.09%) belonged to the age group of 21-40 years (table 1). In the present study 59 cases were males and 41 cases were females, making up 59% and 41% of the cases respectively. Thus there was a male preponderance in our study with a male to female ratio of more than 1:1. In the pyogenic meningitis group 13 cases (43.33%) were females and 17 (56.66%) were males, in tubercular meningitis group 18 cases (36.73%) were female and 31 (63.26%) were males, in viral meningitis group 10 case(57.61%) was female and 11 cases (52.30%) were males. (table no. 2) In our study fever (96%) was the most common complaint while headache (83%) was the second most common complaint. Other complaint were vomiting (52%) Altered sensorium (45%) Seizure (16%), Focal neurological Deficits (9%), Drowsiness (8%), Stupor (5%), Comatose (4%). (table no. 3) The cases of pyogenic meningitis were distributed using different ranges of CSF cell counts & it was found that out of 30 cases, 7 cases had cell count <300/mm3; with mean CRP of 12.58 ± 2.230mg/dl, 12 cases had cell count 300-600/mm3, with mean CRP of 16.29 ± 3.84 mg/dl. 11 patients had cell count >600/mm3 with mean CRP of 26.15 ± 3.99 mg/dl. (table 4) In this study, pyogenic meningitis cases were distributed using different ranges of CSF protein level. out of 30 cases, 11 cases had CSF protein <100mg/dl with mean CSF CRP of 14.2 ± 3.76 mg/dl. 13 cases had CSF protein 100-200 mg/dl with mean CRP of 19.71 ± 6.22 mg/dl. 6 cases had CSF protein >200mg/dl with mean CSF CRP of 26.46 ± 4.19 mg/dl. As we move to the groups with higher CSF protein level, more & more cases had CSF CRP in higher range. (table 5) To study the relation of CSF CRP level with CSF glucose level, cases of pyogenic meningitis were divided on the basis of the ratio of CSF & blood glucose level & then frequency table was made. about 70% of cases having ratio <0.4. Also observed was that those group with lower ratio are having higher CSF CRP levels. The mean CSF CRP levels was calculated & it was evident that when ratio of CSF to blood glucose increases, the mean levels of CSF CRP decreased. The study population was divided into 3 group with CSF to blood glucose ratio being <0.4, 0.2-0.4 and >0.2, and the difference between mean CRP of this group was found to be statistically significant (p < 0.001). (table no. 6) Study shows that As the pyogenic meningitis had average level of CSF CRP of 19.04±6.66mg/dl which is much higher as compared to non pyogenic meningitis (viral meningitis 1.71±0.05mg/dl and TBM 1.97±1.24mg/dl). The calculated p value shows that the difference is statistically significant (p value <0.001). Difference between Average level of CSF CRP of viral meningitis and TBM group are not found to be statistically significant (p value 0.342), (table 7) In present study When the CSF CRP cutoff level was taken as >8mg/dl, 28 out of 30 patients of pyogenic meningitis had CSF CRP level > 8mg/dl which was statistically significant, while it was not true for viral and tubercular meningitis. (table 8) In our study the sensitivity of CRP in diagnosing pyogenic meningitis was 93.33%, specificity of 100%, and 100% of positive predictive value while 97.22% was negative predictive value. (table 9) 15 patients of pyogenic meningitis with altered sensorium had mean CSF CRP level 18.46±7.535. 2 patients with focal neurological deficit had mean CSF CRP level 18.8±8.768. These two groups when compared with mean CSF CRP level of pyogenic meningitis (19.04±6.66) was found to be statistically insignificant (p value 0.8045 and p value 0.9745). 2 patients died in pyogenic meningitis with mean CSF CRP of 16.6±5.65mg/dl which when compared with mean CSF CRP level (19.04±6.66) was found to be statistically insignificant (p value 0.6573). Hence there is no correlation between mean CSF CRP level with clinical presentation and mortality in pyogenic meningitis (table 10). The TBM patients were divided on the basis of CSF cell count level. In group of 0-100 cells/mm³, 10 patients had mean CSF ADA of 9.75±2.19IU/L, 28 patients with CSF cell count 100-200 cells/mm³ had mean CSF ADA level of 12.115±2.75IU/L. In group of >200cells/mm³ 11 patients had mean CSF ADA 16.99±4.9IU/L. The difference between three groups was found to be statistically significant (p value <0.0001). Hence with increase in CSF cell count there was increase in CSF ADA in TBM. (table 11) The TBM patients were divided on the basis of different CSF protein level. In group
with CSF ADA 0-100 mg/dl, there are 23 patients with mean CSF ADA 11.05±1.98 IU/L. There are 21 patients with mean CSF ADA of 13.50±4.31 IU/L in group of CSF protein 101-200 mg/dl. In group with CSF protein >200 mg/dl, there are 5 patients with mean CSF of 16.04±6.28 IU/L. The difference between three groups was found to be statistically significant (p value <0.0001). (Table 12) TBM Patients were divided on the basis of CSF glucose/blood glucose ratio. In group of patients with ratio >0.4, 17 patients had mean CSF ADA 13.46±4.63 IU/L. In group of patients with ratio between 0.2-0.4, 30 patients had mean CSF ADA 12.12±3.47 IU/L. In group of patients with ratio <0.2, 2 patients had mean CSF ADA 11.6±3.95 IU/L. The difference between the three groups was found to be statistically insignificant (p value 5.04). Hence there is no correlation between CSF glucose/blood glucose ratio to CSF ADA in TBM. (Table 13) Study shows that The TBM group has average CSF ADA of 12.54±3.91 IU/L which is much higher compared to non TBM group (pyogenic meningitis 2.93±0.707 IU/L and viral meningitis 2.62±1.071 IU/L). The difference was statistically significant. However the difference between pyogenic and viral meningitis was statistically insignificant (p value 0.541 and p value 0.8906 respectively). Hence there is no correlation between mean CSF ADA level had clinical presentation and mortality in TBM. (Table 17) In our study, 5 (10.2%) out of 49 patients of TBM expired. 2 (6.66%) out of 30 patients of pyogenic meningitis expired. No patients of viral meningitis expired (table 18).
Table No. 9-Diagnostic significance of CRP in relation to pyogenic meningitis

<table>
<thead>
<tr>
<th>Types of meningitis</th>
<th>Total no. cases</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyogenic meningitis</td>
<td>30</td>
<td>93.33%</td>
<td>100%</td>
<td>97.22%</td>
<td>98%</td>
<td></td>
</tr>
</tbody>
</table>

Table No. 10-Relation between clinical presentation and mortality with CSF CRP in pyogenic meningitis

<table>
<thead>
<tr>
<th>No. of Cases</th>
<th>CSF CRP (mg/dl)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altered sensorium</td>
<td>15</td>
<td>18.466 ±7.555</td>
<td></td>
</tr>
<tr>
<td>Focal Neurological Deficit</td>
<td>2</td>
<td>18.8 ±8.768</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>2</td>
<td>16.6 ±5.65</td>
<td></td>
</tr>
</tbody>
</table>

Table No. 11-Relation between CSF cell count with CSF ADA in TBM

<table>
<thead>
<tr>
<th>CSF cell count (cells/mm³)</th>
<th>No. of Cases</th>
<th>CSF ADA (IU/L)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>10</td>
<td>9.75 ±2.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-200</td>
<td>28</td>
<td>12.115 ±2.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>200</td>
<td>11</td>
<td>16.99 ±4.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table No. 12-Relation between CSF protein to CSF ADA in TBM

<table>
<thead>
<tr>
<th>CSF Protein (mg/dl)</th>
<th>No. of Cases</th>
<th>CSF ADA (IU/L)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>23</td>
<td>11.05 ±1.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-200</td>
<td>21</td>
<td>13.50 ±4.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>200</td>
<td>5</td>
<td>16.04 ±6.28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table No. 13-Relation between CSF Glucose/blood glucose with CSF ADA in TBM

<table>
<thead>
<tr>
<th>CSF Glucose/Blood Glucose</th>
<th>No. of Cases</th>
<th>CSF ADA (IU/L)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0.4</td>
<td>17</td>
<td>13.46 ±4.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2-0.4</td>
<td>30</td>
<td>12.12 ±3.478</td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.2</td>
<td>2</td>
<td>11.6 ±3.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table No. 14-Average level of CSF ADA in the different types of meningitis

<table>
<thead>
<tr>
<th>Types of meningitis</th>
<th>Total no. cases</th>
<th>CSF ADA (> 10 IU/L) No. (%) p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBM</td>
<td>49</td>
<td>37 <0.0001</td>
</tr>
<tr>
<td>Pyogenic meningitis</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Viral meningitis</td>
<td>21</td>
<td>0</td>
</tr>
</tbody>
</table>

Table No. 15-P value of CSF ADA

<table>
<thead>
<tr>
<th>Types of meningitis</th>
<th>Total no. cases</th>
<th>CSF ADA (< 10 IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBM</td>
<td>49</td>
<td>37</td>
</tr>
<tr>
<td>Pyogenic meningitis</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Viral meningitis</td>
<td>21</td>
<td>0</td>
</tr>
</tbody>
</table>

Table No. 16-Diagnostic significance of ADA in relation to TBM

<table>
<thead>
<tr>
<th>Types of meningitis</th>
<th>Total no. of cases</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBM</td>
<td>49</td>
<td>75.51%</td>
<td>100%</td>
<td>80.95%</td>
<td>88%</td>
<td></td>
</tr>
</tbody>
</table>

Table No. 17-Relation between clinical presentation and mortality with CSF ADA in TBM

<table>
<thead>
<tr>
<th>No. of Cases</th>
<th>CSF ADA(IU/L)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altered sensorium</td>
<td>25</td>
<td>13.28 ±5.046</td>
<td></td>
</tr>
<tr>
<td>Focal Neurological Deficit</td>
<td>7</td>
<td>12.77 ±3.427</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>5</td>
<td>12.02 ±2.9751</td>
<td></td>
</tr>
</tbody>
</table>

Table No. 18-Outcome based on the type of meningitis

<table>
<thead>
<tr>
<th>Types of meningitis</th>
<th>Outcome</th>
<th>Expired</th>
<th>Recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBM</td>
<td>5(10.2%)</td>
<td>44(89.79%)</td>
<td></td>
</tr>
<tr>
<td>Pyogenic meningitis</td>
<td>26(66.6%)</td>
<td>28(33.33%)</td>
<td></td>
</tr>
<tr>
<td>Viral meningitis</td>
<td>0(0%)</td>
<td>21(100%)</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

The present study was carried out to detect CSF CRP levels & ADA levels in different types of meningitis. Out of the total 100 cases taken for study, 49 cases were of TB Meningitis, 30 cases were of Pyogenic meningitis & 21 cases were of viral Meningitis. The present study was conducted in the Deptt. of Medicine, G.R.M.C. Gwalior, during the period of Nov. 2012 to Nov. 2013. The diagnosis of Meningitis was based of existing history & clinical examination supported by Lab Investigations & findings of CSF examinations. In our study the most of patients belongs to age group of 20-40 years. Same findings were present in previous studies done by Bohr V & Hansen B et al. (1983) and Schlech WF et al. (1985). In our study fever (96%) was the most common complaint while headache (83%) was the second most common complaint. Other complaint were vomiting (52%), Altered sensorium (45%), Seizure (16%), Focal neurological Deficits (9%), Drowsiness (8%), Stupor (5%), Comatose (4%). Similar patterns of presenting complaints were found in the studies of Carpenter et al. and Kaplan et al. in this study, it is evident that patients with higher cell count have higher mean CRP levels. This difference was found to be statistically very significant (p <0.001). Hence there was significant correlation b/w CSF CRP levels & CSF total count in pyogenic meningitis. This finding is consistent with the previous studies. In this study we found that patients of pyogenic meningitis with higher protein levels in Csf have higher CRP levels. This finding was statistically very significant (p < 0.0001). This finding is concordant with previous studies. In our study we correlates the ratio of CSF to Blood Glucose ratio with CSF CRP and a inverted relation was found and this finding was statistically significant. In the previous studies similar correlation was found. In this study mean CRP level of pyogenic meningitis, TB meningitis & viral meningitis were 19.04±0.66 mg/dl; 1.97±1.24 mg/dl and 1.71±0.05 mg/dl respectively. This difference between mean level of CSF CRP between pyogenic and non pyogenic (TB and viral) meningitis was found to be statistically very significant (p<0.001). The sensitivity & specificity of CSF CRP in pyogenic meningitis was 93.33% & 100% when the cut off was taken as >8g/ml.
Previous studies also conclude that CRP negativity could be taken as no for pyogenic meningitis, and higher levels of
crp were presents with gram negative organism comparison
to gram negative organisms. In the present study, we
attempt to assess the correlation of CSF CRP with clinical
presentation & mortality in pyogenic meningitis. But CSF
CRP level did not bear any correlation with clinical
presentation & outcomes in pyogenic meningitis in our study
and this was true in previous studies also. The cases
of TBM were distributed using different ranges of CSF cell
counts correlation with csf ADA level. & it was found that
with increases in CSF total counts there is increase in CSF
ADA in TBM and this is statistically significant. This findings
was consistent with past studies. To study the relation of
CSF ADA level with CSF glucose level. And no correlation
was found between CSF ADA and blood glucose. this
finding was consistent with previous study. In this study,
the mean CSF ADA levels of TB meningitis, pyogenic
meningitis & viral meningitis were 12.57±3.91 IU/l, 2.93±0.707 IU/l and 2.62±1.071. The difference between
mean CSF ADA level between TBM & pyogenic and viral
meningitis was found to be statistically very significant
(p<0.0001). The sensitivity & specificity of CSF ADA in
TBM was 75.51% and 100% when the cutoff level was
taken as >10 IU/l. this finding is consistent with previous
studies in our study, CSF ADA level did not bear any
correlation with clinical presentation & outcome in TBM
patients.

Conclusion

CSF CRP level was found to be higher in patients of
pyogenic meningitis when compared to TBM and viral
meningitis. CSF ADA level was higher in TBM when
compared to pyogenic and viral meningitis. CSF CRP level
correlated with CSF cell count, CSF protein & CSF to
blood glucose ratio, but there was no correlation between CSF CRP
level with clinical presentation and morality in pyogenic
meningitis. CSF ADA correlated with CSF cell count & CSF
protein level but did not correlate with CSF to blood glucose
ratio in TB meningitis. CSF ADA level do not correlate with
clinical presentation & mortality in TBM meningitis. Using cut
of of <8mg/dl for CSF CRP, the sensitivity and specificity
of CSF CRP for diagnosis of pyogenic meningitis was found
to be 93.33% and 100% respectively. Using cut off level of
<10mg IU/l for CSF ADA, the sensitivity and specificity of
CSF ADA for diagnosis of TBM was found to be 75.51%
and 100% respectively.

References

1. Harrison's PRINCIPLES OF INTERNAL MEDICINE
Eighteenth Edition; Chapter 381. Meningitis,
Encephalitis, Brain Abscess, and Empyema
2. Tillett, W. S. and Francis, T. Jr.: Serological reactions in
pneumonia with a non-protein somatic fraction of
5. Marinez Vazquez JM, Ribra e, Ocaná I, Sengur RM,
Serrat R and Sagrista J. Adenosine dreaminase activity
in tuberculosis pericarditis. Thorax 1986; 41:888.
6. Fraser DW, Darby CP, Koehler RE, Jacobs CF, Feldman
RA. Risk factors in bacterial meningitis: Charleston
Community-acquired purulent meningitis: a review of
1,316 cases during the antibiotic era, 1954-1976. Rev
8. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes
seventy-five cases of bacterial meningitis. I. Clinical
data, prognosis, and the role of specialised hospital
10. Schlech WF III, Ward JA, Band JD, Hightower A, Fraser
DW, Broome CV. Bacterial meningitis in the United
States, 1978 through 1981: the National Bacterial
Meningitis Surveillance Study. JAMA 1985;253:1749-
1753.
11. Carpenter RR, Petersdorf RG. The clinical spectrum of
12. Kaplan SL, Feigin RD. Clinical presentations,
prognostic factors and diagnosis of bacterial meningitis.
In: Sande MA, Smith AL, Root RK, eds. Bacterial
meningitis. Vol. 3 of Contemporary issues in infectious
13. Stearman M, Southgate HJ. The use of cytokine and
C-reactive protein measurements in cerebrospinal fluid
14. Tankhiwale SS, Jagtap PM, Khadse RK, Jalgaonkar SV.
Bacteriological study of pyogenic meningitis with
special reference to C-reactive protein.
15. Goran Rajs, Zvezdana Finzi-Yeheskel, Andrea Raj and
Michael Mayer. C-Reactive Protein Concentrations in
Cerebral Spinal Fluid in Gram-positive and Gram-
negative Bacterial Meningitis.2002. Clinical Chemistry
48: 591-592.
Bull. 1962;9.
17. L. Lindquist, T. Liaaen, L.O. Hansson, M. Kalin and
G. Axlesson.Value of cerebrospinal fluid analysis in the
 differential diagnosis of meningitis: A study in 710
patients with suspected central nervous system infection.
European Journal of Clinical Microbiology & Infectious
18. Vaishnani C, Dhand UK, Dhand R, Agnihotri N,
Ganguly NK. C-reactive proteins, immunoglobulin profile
and mycobacterial antigens in cerebrospinal fluid
of patients with pyogenic and non tuberculous meningitis. 1992; 36(3): 317-25.