Investigation the different ratios of carrier material to protect carotenoids in GAC (Momordica cochinchinensis Spreng) powder in drying process

Nguyen Phuoc Minh

Abstract

Momordica cochinchinensis Spreng, Cucurbitaceae, is indigenous to Southeast Asia and consumed there for dietary as well as medicinal uses. In Viet Nam, this plant is called “Gac”, and the seed membrane (seed pulp or aril) of the ripe fruit is widely used as a rice colorant due to its intense red color from its high carotene content. The aim of this study is to investigate the different ratios of carrier material to find out the appropriate ratio to protect carotenoids in Gac powder. The result shows that the most appropriate ratio of carrier: Gac is 1:1 (dry matter) in which the ratio of maltodextrin: gelatin is 0.5:0.5 (w/w).

Keywords: Momordica cochinchinensis Spreng, carotene, accelerated temperature, shelf-life

1. Introduction

1.1 Nutritional composition of Momordica cochinchinensis (Gac) seed pulp

β-carotene is an antioxidant containing highly in Gac fruit, a common fruit grown on Vietnam rural area. Therefore, researches to manufacture Gac powder with the purpose of preserving and protecting β-carotene to optimum level will be very essential not only to create food source having high content of antioxidant, very helpful to human health but also to utilize cheap and available raw material in domestic.

Many studies proved that Gac highly contains β-carotene and lycopene; total carotenoid varies in range 3768.3 – 7516 µg/g \cite{8}, β-carotene (17-35 mg/100 g edible portion) \cite{11}. Gac fruits also have a large amount of α-tocopherol (Vitamin E) \cite{11} and fatty acid \cite{10}. β-carotene, lycopene and vitamin E are all antioxidant, role as improving human immune and resisting to cancer and aging.

Many researchers also emphasized Gac as a clean safe fruit, more effectively than tomato and carrot regarding antioxidase owing to its edible portion having β-carotene two folds compared to liver oil of tuna fish and 10 folds to carrot. Entering human body, β-carotene will be bio-transformed to vitamin A under attack of carotenase depending on vitamin A demand inside human body. Consumption of Gac powder will not be considered vitamin A overload.

![Fig 1: Beta-carotene contents of “Gac” fruits and other commonly consumed fruits and vegetables in northern Vietnam \cite{10}](image)

Correspondence:

Nguyen Phuoc Minh
Agro-Aquaculture Faculty, Tra Vinh University, Vietnam.
In composition of Gac, seed membrane contains the highest density of lycopene and β-carotene. Lycopene in seed membrane accounts for 380 µg/g, 10 folds higher than other fruits [6, 10]. In fresh Gac fruit, lycopene covers 2227 µg/g. Seed membrane also keeps a large amount of fatty acids to 17%-22% weight [12]. Oil extracted from Gac has total carotenoid 5700 µg/ml, where β-carotene accounts for 2710 µg. Gac oil also includes vitamin E excessively [12]. Gac skin has aburnable lutein. Phenol substances in Gac include gallic acid and p-hydroxybenzoic acid; seed membrane also contains acid ferulic [10, 12].

<table>
<thead>
<tr>
<th>Table 1: Approximate nutrient composition of Momordica cochinchinensis Spreng (per 100g of edible portion) [10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>Fruit</td>
</tr>
<tr>
<td>Seed pulp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Fatty acid composition of Gac pulp [10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Myristic</td>
</tr>
<tr>
<td>Palmitic</td>
</tr>
<tr>
<td>Palmitoleic</td>
</tr>
<tr>
<td>Stearic</td>
</tr>
<tr>
<td>Oleic</td>
</tr>
<tr>
<td>Vaccenic</td>
</tr>
<tr>
<td>Linoleic</td>
</tr>
<tr>
<td>alpha linolenic</td>
</tr>
<tr>
<td>Eicosaenoic</td>
</tr>
<tr>
<td>Gadolecic</td>
</tr>
<tr>
<td>Arachidonc</td>
</tr>
<tr>
<td>Docosanoic</td>
</tr>
<tr>
<td>Tetracosanoic</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

In ripe Gac fruit, β-carotene is the dominant carotenoid. In addition to carotene, Gac pulp also contains a significant amount of oil. Fatty acid analyses indicate that Gac contains 852 mg per 100g of edible portion. Seventy percent of the total fatty acids of Gac pulp comprise of unsaturated fatty acid, 50% of which are polyunsaturated. Approximate nutrient composition of Gac fruit is provided. Fatty acid composition of Gac pulp is listed in table 2 [10].

2. Carrier material

Maltodextrin

Maltodextrins are defined as non-sweet, nutritive saccharide polymers consisting of D-glucose units linked primarily by -1, 4 bonds and having a maximum dextrose equivalent (DE) of less than 20. Following local developments the regulations restricted the preparation to partial hydrolysis of cornstarch by treatment with acids and enzymes resulting in a white powder or concentrated solution. Developed processes for production of maltodextrins are manifold and included finally also potato starches substrate, in particular in the production of specialty maltodextrins [2, 5, 7].

![Maltodextrin](image)

Gelatin

Gelatine which is a water-soluble protein, has not only a good coating property for the encapsulation process but is also nontoxic, inexpensive and commercially available, in addition to being another effective wall material. Using a gelatine matrix is the best way to protect carotenoid pigments, especially trans-β-carotene [4, 5].

Many studies have reported about Gac

- Nguyen Minh Thuy et al. (2009) manufactured variety of Gac products such as: dried Gac seed membrane, jelly, gum, paste, oil and juice. They also proved the change of carotene in Gac seed membrane after 6 days harvested [1].
- Dang Thi Tuyet Nhung et al. (2009) evaluated the change of lycopene and β-carotene in Gac seed membrane and Gac oil during preservation. Gac seed membrane primarily contained lycopene 2.378 – 3.728mg/g (raw material), β-carotene 0,257 – 0,379mg/g (raw material), carotene stabilized within the first one week by strongly decomposed in the second week of preservation. Gac oil extracted from seed membrane with addition of 0.02% BHT, it could be preserved 15 to 19 weeks at 5 °C, 40 °C, 60 °C; lycopene and β-carotene also reduced dramatically [3].
- Tuyen Chan Kha et al. (2010) produced Gac powder by using spray drying method with maltodextrin supplementation. They concluded that the appropriate drying process to keep red color was in temperature 120 °C, 10% maltodextrin as carrier material (w/v) [9].

In this paper, we examine the carrier materials to cover and limit oxidation of carotene during drying step.
3. Material and methods

Raw Gac fruit source
Gac fruits (*Momordica cochinchinensis* Spreng) are originally collected from Trang Bang, Tay Ninh province, Vietnam when they are in half ripen stage. They are kept 6 days and then experimented.

![Half ripen Gac](image1)

![Overal ripen Gac](image2)

Fig 3: Half ripen Gac

Fig 4: Overall ripen Gac

Raw material preparation
Gac fruits are chopped into two parts, collect seed membrane, discard seed. In our experiments, we only use seed membranes without seed, pulp and skin.

Carrier material
Maltodextrin
Maltodextrin is originally provided from Germany. Using maltodextrin having high DE will increase moisture and energy in drying as well as bad encapsulation appearance. In this study we choose maltodextrin having DE = 10.

Gelatin
Gelatin 125 blum is supported from Nitta (Canada) 100% purity, extracted from pig skin.

Mixing Gac seed membrane with carrier material
Mixing with maltodextrin
Experimental parameter:
- Ratio of maltodextrin/ Gac dry matter: 0/1; 0.5/1; 1/1; 1.5/1; 2/1 (w/w).
- Control sample: Gac seed membrane collected from steaming 6 minutes and grinding (without carrier)

Fixed parameter:
- Maltodextrin solution 50% weighed and supplemented into raw material powder in equivalent ratio.
- Gac seed membrane after being pretreated in preserved in refrigerator 5 °C, 15 minutes.
- Sample weight: 35 g raw Gac seed membrane.
- Scatter sample in drying: 0.2 g/cm².
- Temperature of drying: 60 °C.
- Moisture content of sample after being dried: 6 ± 1%.

Target parameter:
- Total carotenoid µg/g Gac seed membrane (dry matter).

Mixing Gac seed membrane with maltodextrin - gelatin
Experimental parameter:
- Ratio of maltodextrin-gelatin: based on result of the last experiment, varied gelatin concentration 10%, 20%, 30%, 40%, 50% to volume of maltextrin, and reduce volume of maltodextrin in equivalent to gelatin supplemented (dry matter).
- Control sample: Gac seed membrane treated with method from the last experiment.

Fixed parameter:
- Solution 50% carrier (maltodextrin- gelatin) is weighed and added into raw material in equivalent ratio.
- Gac seed membrane after being pretreated in preserved in refrigerator 5 °C, 15 minutes.
- Sample weight: 35 g raw Gac seed membrane.
- Scatter sample in drying: 0.2 g/cm².
- Temperature of drying: 60 °C.
- Moisture content of sample after being dried: 6 ± 1%.

Target parameter:
- Total carotenoid µg/g Gac seed membrane (dry matter).

4. Results and Discussion

4.1 Effect of maltodextrin concentration

![Total Carotenoid](image3)

Fig 5: Effect of maltodextrin addition to total carotene in Gac powder (µg carotene/g Gac seed membrane) (dry matter)
Table 3: Effect of maltodextrin addition to total carotene in Gac powder

<table>
<thead>
<tr>
<th>Ratio Maltodextrin: Gac (dry matter)</th>
<th>Replication</th>
<th>Average of carotene (µg/g seed membrane) (dry matter)</th>
<th>Difference to control (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:1 (Control)</td>
<td>3</td>
<td>3740.97<sup>a</sup></td>
<td>0</td>
</tr>
<tr>
<td>0.5:1</td>
<td>3</td>
<td>3839.87<sup>a</sup></td>
<td>20.43</td>
</tr>
<tr>
<td>1:1</td>
<td>3</td>
<td>4302.76<sup>b</sup></td>
<td>34.94</td>
</tr>
<tr>
<td>1.5:1</td>
<td>3</td>
<td>4356.76<sup>b</sup></td>
<td>36.64</td>
</tr>
<tr>
<td>2:1</td>
<td>3</td>
<td>4378.25<sup>b</sup></td>
<td>37.31</td>
</tr>
</tbody>
</table>

Our results show that maltodextrin addition will limit carotene loss comparing to control sample (only steaming). Maltodextrin added into raw material after being steamed 6 minutes, cooled, ground will act as protect agent for carotene in front of oxygen during drying step. Anova stastical analysis ($\alpha = 0.05$) clearly expressed the difference of ratio 0.5:1; 1:1; 1.5:1; 2:1; (maltodextrin: Gac seed membrane). Comparing to control sample, total carotene of sample with ratio 1:1 is higher 34.94%. So we choose maltodextrin: Gac seed membrane with ratio 1:1 (dry matter) for further experiments.

Fig 6: Comparison of Gac powder with different ratio with maltodextrin

Effect of ratio maltodextrin-gelatin

Fig 7: Effect of maltodextrin – gelatin ratio to total carotene in Gac powder (µg carotene/g Gac seed membrane) (dry matter)
In this experiment, we accumulate gelatin amount, deduct maltodextrin amount. Ratio of carrier: Gac seed membrane (dry matter) is still fixed at 1:1. Result shows that gelatin addition to maltodextrin will prevent total carotene loss through increasing gelatin equivalent to maltodextrin. Statistical analysis ($\alpha=0.05$) shows the highest carotene while mixing maltodextrin: gelatin at ratio 0.5: 0.5. Gelatin acts as surface reagent, dissolve in water more easily at high temperature over thawing point, with hydrophobic series in molecule. When mixing sution of gelatin and maltodextrin into raw Gac seed membrane steamed, grinded; gelatin will dissolve with lipid in Gac so it covers carotene more effectively. Gelatin in outer together with maltodextrin will isolate oxygen penetrate into Gac powder. While moisture vapors in drying step, gelatin forms firm gel layer to cover Gac powder.

<table>
<thead>
<tr>
<th>Method</th>
<th>Replication</th>
<th>Average of carotene (µg/g seed membrane) (dry matter)</th>
<th>Difference to control (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M (Control)</td>
<td>3</td>
<td>4109.30a</td>
<td>0.0</td>
</tr>
<tr>
<td>0.9M+0.1Gel</td>
<td>3</td>
<td>4681.65b</td>
<td>13.9</td>
</tr>
<tr>
<td>0.8M+0.2Gel</td>
<td>3</td>
<td>4728.61bc</td>
<td>15.1</td>
</tr>
<tr>
<td>0.7M+0.3Gel</td>
<td>3</td>
<td>4860.68bc</td>
<td>18.3</td>
</tr>
<tr>
<td>0.6M+0.4Gel</td>
<td>3</td>
<td>4939.95c</td>
<td>20.2</td>
</tr>
<tr>
<td>0.5M+0.5Gel</td>
<td>3</td>
<td>5277.30d</td>
<td>28.4</td>
</tr>
</tbody>
</table>

Fig 8: Gac powder with different ratio of carrier maltodextrin-gelatin

Our experiment demonstrates gelatin supplementation at concentration 50% to maltodextrin to prevent carotene loss in Gac seed membrane, which is expressed in carotene higher 28.4% compared to control sample, only using carrier maltodextrin with ratio maltodextrin: Gac seed membrane 1:1 (dry matter). However in our scope, we only choose maltodextrin the main carrier, gelatin as the supplementing agent to protect carotene; and ratio 50% of maltodextrin: gelatin. If we increase gelatin and decrease maltodextrin, viscosity will be too concentrated and form unexpected gel. From 1 kg raw Gac fruit, we get 200g seed membrane (20%), remove 80g seed (8%). Moisture of seed membrane is about 80% so 200g seed membrane is equal to 40g dry matter. In general, raw Gac fruit contains about 4% dry matter of seed membrane. On our calculation for above experiments, we decide the pretreatment method by steaming in 6 minutes, carrier ratio 1:1, maltodextrin: gelatin 0.5: 0.5 (dry matter). Total carotene in Gac powder (dry matter) is about 6000µg/g seed membrane; β-carotene is about 500µg/g seed membrane.

5. Conclusion

Using maltodextrin and gelatin as carrier has advantage of carotene loss prevention during drying Gac powder. Ratio of carrier is suitable at 1: 1 (carrier: Gac seed membrane), ratio of mixing 0.5: 0.5 (maltodextrin: gelatin) (dry matter). We recommend further studies, including: variation of carotene in Gac fruit before and after harvest; other carrier to protect carotene as rice starch, gum Arabic; gelatin as the main carrier; inert air in drying Gac powder; other drying methods as freeze drying, spray drying with different carrier materials.

6. References

