Antimicrobial activity of Plants Oils

Naghm Mahmood Aljamali, Hussain Sami Kermasha

Abstract
The purpose of this work was to examine the effectiveness of plants oils for inhibition of growth of microorganisms by the paper disc agar diffusion method. Essential oils from (Colocynth, Lupin, Castor, Snak) were evaluated on two bacteria (B. subtilis and S. pyogenes) and fungal species (A. niger) and compared with standard antibiotic ampicillin. From the results, the four essential oils showed the greatest inhibition (inhibition zone from 29 to 15) mm to B. subtilis and (inhibition zone from 25 to 12) mm to S. pyogenes and (inhibition zone from 20 to 10 mm) to A. niger in minimum inhibitory concentration (MIC) ranged (50-100) µL/mL.

Keywords: A. niger, Castor, Lupin, diffusion method.

1. Introduction
For over thousands of years now, natural plants have been seen as a valuable source of medicinal agents with proven potential of treating infectious diseases and with lesser side effects compared to the synthetic drug agents. The objective of this research was to evaluate of plant extracts and phytochemicals on standard microorganism strain as well as multi-drug resistant which were isolated from hospitals. Moreover, we investigated the synergistic effects of extracts with antimicrobial activity in association with antibiotics against drugs resistant bacteria. The use of alternative medical therapy has increased the interest of pharmacologists over the past decade. In recent years a large number of essential oils and their constituents have been investigated for their antimicrobial properties against bacteria and fungi, various essential oils are biocides against a broad range of organisms [1-4], even though pharmacological industries have produced a number of new antibiotics in the last decades, resistance to these drugs by microorganisms has increased, for these reason, research and studies developed new drugs either synthetic or natural from medicinal plants. Most of these plants contain many compounds, consequently, they are multipurpose drugs at the same time such as phenols, alkaloids, tannins, glycosides, saponins, flavonoids, carbohydrates, peptides, free amino acids [5-9].

For a long period of time, plants have been a valuable source of natural products for maintaining human health, with more intensive studies for natural therapies, the use of plants compounds for pharmaceutical purpose has gradually increased in world.

2. Materials and Methods:
The four oils of (Colocynthis, Lupin, Caster, Snak) were supplied from Alzahraa company for essential oils in Baghdad. The oils (100% pure essential oil) were stored in dark bottles until use.

2.1 Assay of antimicrobial activity [6, 10]:
Antimicrobial activity was tested by the filter paper disc diffusion method on two bacteria (B.subtilis and S.pyogenes) and fungal species (A.niger) 0.1 ml of the bacterial suspensions was seeded on agar, each essential oil (25 mg of 100% from oil ) diluted to several concentration ranged (50-150) µl/ml to determine minimal inhibitory concentration (MIC) respectively.

These discs were impregnated with each oil, then, the discs were placed at the plates and incubated for 48 h at 32 °C . The least concentration of the four oils showing a clear zone of inhibition (measured with a meter rule ). Antibiotic ampicillin was used as positive control and standard, the assays were performed with two replicates.
3. Results and Discussion:
The main objective of this study is to examine the antimicrobial activities of the four oils, there is a relationship between the chemical structures of the most abundant compounds in the tested essential oils antimicrobial activity [11, 12]. The results (Table.1) revealed that the four oils were more active on two bacteria (B. subtilis and S. pyogenes) than fungal species (A. niger).

Table 1: Antimicrobial activity of the four oils and zone of inhibition (mm).

<table>
<thead>
<tr>
<th>The oils</th>
<th>Zone of inhibition(mm)</th>
<th>Bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B. subtilis</td>
<td>S. pyogenes</td>
</tr>
<tr>
<td>Castor</td>
<td>29</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Cloccocynth</td>
<td>24</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>Lupin</td>
<td>19</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Snak</td>
<td>31</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Ampiciline(1mg/ml)</td>
<td></td>
<td>24</td>
<td>18</td>
</tr>
</tbody>
</table>

Generally, The results showed that the four oils had great inhibitory effect against tested bacteria when compared with Synthetic antibiotic ampicillin, these oils showed inhibition Zone(From 29 to 15) mm at minimal inhibitory concentration ranged from (50-100) µl/ml respectively, on bacteria (B. subtilis) while they showed inhibition zone (from 25 to 12)mm on (S. pyogenes) compared with inhibition zone (from 20 to 9)mm on fungi (A. niger).

It has proved that various oils possess bacteriostatic and bactericidal effects and most of these oils contain many active compounds, they are multipurpose drugs at the same time, their activity comes from the presence of hydroxyl groups in phenols, which are capable to bind with the enzymes and inhibit their action and presence of carbonyl groups which confirmed the presence of electronic density on this compound, resulting in enhancing their ability to inhibit microbial growth [5, 13-16].

4. References