
 

~ 273 ~ 

 
Volume :2, Issue :4, 273-277 
April 2015 
www.allsubjectjournal.com 
e-ISSN: 2349-4182 
p-ISSN: 2349-5979 
Impact Factor: 3.762 
 
Ahmed Mohammed Naji 
Department of Studies in 
Mathematics University of 
Mysore, Manasagangotri 
India 
 
N. D. Soner 
Department of Studies in 
Mathematics University of 
Mysore, Manasagangotri 
India 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Correspondence: 
Ahmed Mohammed Naji 
Department of Studies in 
Mathematics University of 
Mysore, Manasagangotri 
India 

 
The connected monopoly in graphs 
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Abstract 
In a graph G(V, E), a set d   V(G) is said to be a monopoly set of G if any vertex v V - D has at 

least 2

)( vd

 neighbors in D, where )(vd  is a degree of v  in G . A monopoly set D  of G  is 

called a connected monopoly set of G  if the subgraph D  induced by D  is connected. The 

minimum cardinalities of connected monopolies sets of G , denoted by )(Gcmo  is called the 

connected monopoly size of G . In this paper, we investigate the relationship between )(Gcmo  and 

some other parameters of graphs. Bounds for )(Gcmo  and its exact values for some standard graphs 
are found.  
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1. Introduction 

In this paper, we are conceder with a simple graph ),( EVG , that nonempty, finite, have no 

loops no multiple, directed edges. Let G  be such a graph and let n  and m  be the number of 

its vertices and edges, respectively. A graph H  is a subgraph of G  if )()( GVHV   and 

)()( GEHE  . For subset )(GVS  , the subgraph S  of G  is called the subgraph 

induced by S  if },|)({=)( SvuGEuvSE  . A graph G  is said to be connected if 
for every pair of vertices there is a path joining them. The maximal connected subgraphs are 

called components. The connectivity number )(G  is defined as the minimum number of 

vertices whose removal from G  results in a disconnected graph or in the trivial graph (a 

single vertex). A graph G  is said to be k -connected if kG )( . We refer to [4] for graph 
theory notation and terminology not described here. 

 A set D  of vertices in a graph G  is a dominating set of G  if every vertex in DV   is 

adjacent to some vertex in D . The domination number )(G  of G  is the minimum 

cardinality of a dominating set in G . The concept of connected domination number was 

introduced by E. Sampathkumar and H. Walikar [8]. A dominating set D  of a graph G  is 

connected dominating set if a subgraph induced by D  is connected. The connected 

domination number )(Gc  of G  is the minimum cardinality of a connected dominating set in 
G . for more details in domination theory of graphs we refer to [5]. 

 A subset D  of vertices set of a graph G  is called a monopoly set if for every vertex 

DGVv  )(  has at least 2

)(vd

 neighbors in D . The monopoly size of G  is the smallest 

cardinality of a monopoly set in G , denoted by )(Gmo . A monopoly set D  of a graph G  

is minimum if for any other monopoly set 
'D  of G , |||| 'DD  . Any monopoly set D  of 

a graph G  with minimum cardinality is called a minimum monopoly set. In particular, 
monopolies are a dynamic monopoly (dynamos) that, when colored black at a certain time  
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step, will cause the entire graph to be colored black in the 
next time step under an irreversible majority conversion 
process. Dynamos were first introduced by Peleg [9]. For 
more details in dynamos in graphs we refer to [1, 2, 3, 7, 

10]. In [6], the author defined a monopoly set of a graph G

, proved that the )(Gmo  for general graph is at least 2

n

, 
discussed the relationship between matchings and 

monopolies and he showed that any graph G  admits a 

monopoly with at most )(' G  vertices. 

 A monopoly set D  of a graph G  is called a connected 

monopoly set of G  if the subgraph D  induced by D  is 
connected. The minimum cardinalities of connected 

monopolies sets of G , denoted by )(Gcmo , is called the 

connected monopoly size of G . In this paper, we introduce 
and study the connected monopoly size of graphs and we 

investigate the relationship between )(Gcmo  and some 

other parameters of a graph. Bounds for )(Gcmo  and its 
exact values for some standard graphs are found. It is clear 

that, a connected monopoly size of a graph G  is exists if 

and only if G  is connected. Then we consider all graphs in 
this paper is connected, unless refer to otherwise. To 

illustrate this concept, consider the following graph G  in 
Figure 1. 

 

 
 

Fig 1: A graph G  with 2= , 3=c , 3=mo , 4=cmo . 
 

The set },{ 64 vv  is a dominating set of a graph G  with 

minimum cardinality, then 2=)(G , the set },,{ 654 vvv  

is a connected dominating set of G  with minimum 

cardinality, then 3=)(Gc , the set },,{ 764 vvv  is a 

monopoly set of G  with minimum cardinality, then 
3=)(Gmo  and the set },,,{ 7654 vvvv  is a connected 

monopoly set of G  with minimum cardinality, then 
4=)(Gcmo .  

 
2. Exact Values of Connected Monopoly Size of Some 

Standard Graphs 
The connected monopoly size of some standard graphs can 
be easily found and are given as follows:  
 

 
 
Observation 2.1  

 1.


2
=)(

n
Kcmo n

, 2n .  

 2.
2=)(=)( nCcmoPcmo nn , 3n .  

 3.
1=)( 1,nKcmo

, 2n .  

 4. 
rssKcmo rs  2   1,=)( , .  

 5. 












.   1,
3

3);mod(1,
3=)(

otherwise
n

nif
n

Wcmo n

 

Where nW
 is a wheel graph of order 4n .  
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Theorem 2.2 Let T  be a tree with n  vertices. Then  

 ).(=)( TlnTcmo   
 Where )(Tl  is the number of pendent vertices in T . 

Proof. Let T  be a tree with n  vertices, 1}=)(: {=)( vdTvTL   and let |)(=|)( TLTl . Then since for every 

)(TLv , 2

)(
1|=))(()(|

vd
TLTvN 

, it follows that )(TLT   is a monopoly set of T . Furthermore, 
 )(TLT  is a connected induce subgraph of T . Therefore,  

(1).                   )(|=)(|)( TlnTLTTcmo   

Conversely, since for every )(TLTv   is a cut-vertex of a tree T , it follows that  
(2).                                      )()( TlnTcmo   

From equations (1) and (2) we get ).(=)( TlnTcmo    
 
 
3. Bounds on Connected Monopoly Size of Graphs 
Relationships between a connected monopoly size 

)(Gcmo  and some other parameters of a graph G  as a 

monopoly size )(Gmo , a domination number )(G , a 

connected domination number 
)(Gc , an independent 

number )(G  and a connectivity number )(G  may 
be get its as following: 
Since a connected monopoly set of graphs is necessarily 
a monopoly set, it follows that the following result is 
obvious.  

Proposition 3.1 For any connected graphG , 
).()(  GcmoGmo    

 It is immediate observation, from definitions, that a 
connected monopoly set of a graph G  is a connected 
dominating set. Then the following results proof is not 
hard to get it.  

Proposition 3.2 For any connected graph G , 

).()(  GcmoGc 
  

 The following results is immediate consequences of 
Proposition 3.2.  

Corollary 3.3 For any connected graph G , 
).()(  GcmoG    

 

 
 

Theorem 3.4 Let G  be a connected graph of order n  and let p  an integer number such that 2)(0  Gp  . If 
pGG  )()(  , then  

 1.)()(  pGnGcmo   

Proof. Let G  be a connected graph of order n  and let 2)(0  Gp  . If pGG  )()(  , then the subgraph 
 IV  induced by subset IV   is connected, where I  is an independent set of G  with cardinality equals to 

1)(  pG . Since I  is an independent set, it follows that 2

)(
|)()(|

vd
IVvN 

 for every Iv . Hence, IV   

is a connected monopoly set of G . Therefore,  

 1.)(||)(  pGnIVGcmo   

If 0=p  then 1)(  nGcmo , this situation, we can observe it for example, in rrK , , where 

rKK rrrr =)(=)( ,, 
 and 

10=1=)( ,  nrKcmo rr .  

Theorem 3.5 Let G  be a connected graph with minimum degree  . Then  

 

.
2

)(
)( 





G
Gcmo



 

Proof. Let G  be a connected graph with minimum degree   and let D  be a connected monopoly set of G . Since D  is a 
connected monopoly set, it follows that  

 22

)(
|)(|||




vd
DvND

. 

for every DVv  . But  )(G  for every connected graph. Hence,  

 
.

2

)(
|=|)(

G
DGcmo



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Theorem 3.6 Let D  be a minimum monopoly set of a connected graph G . If 1)(||  GDV  , then  

 ).(=)( GmoGcmo  

Proof. Let D  be a minimum monopoly set of G  and let 1)(||  GDV  . Then the subgraph D  induced by D  is 

connected. Hence, )(|=|)( GmoDGcmo  . But from Proposition 3.1. we have )()( GcmoGmo   for any connected 
graph. And this completes the proof.  
  
The following results is immediate consequences of Theorem 3.6.  

Corollary 3.7 For any connected graph G , if 1)()(  GnGmo  , then  

 ).(=)( GmoGcmo  
 

Lemma 3.8 For a connected graph G  of order 3n ,  

 .)( pnGcmo   

 Where p  is the number of pendent vertices of G  ( Vertices of degree equal to 1).  

Theorem 3.9 Let G  be a connected graph of order 3n . Then  

 2.)(  nGcmo  

The bound is sharp, nP
 and nC

 attainting it.  

Proof. Let G  be a connected graph of order 3n , and let GL   define as 1}=)(:)({= vdGVvL  . Then by 

Lemma 3.8. we have ||)( LnGcmo  .  

If 2|| L , then the theorem is hold. Otherwise, if 2|<| L , then we consider the following cases: 

Case 1: 1|=| L , namely }{= vL , Choose a vertex )(GVu , vu   such that u  is not a cut-vertex in G . It is clear 

that )(vNu . Hence, the subgraph  },{ uvV  is connected. Furthermore, },{ uvV   is a monopoly set in G . 

Therefore, 2|=},{|)(  nuvVGcmo . 

Case 2: 0|=| L , then 2)( vd  for every )(GVv . Choose subset )(GVS   and },{= wuS  such that 
)(GEuw  and neither u  nor w  is a cut-vertex in G . Hence, the subgraph  SV  is connected. Furthermore, 

2

)(
1|=)(|

ud
SuN 

. Similarly for w . Hence, SV   is a connected monopoly set in G . Therefore, 
2)(  nGcmo .  

 We have from Theorem 3.9. that 2)(1  nGcmo . In the following result we characterize all graphs which attainting 
the lower bound.  
 

Theorem 3.10 Let G  be a connected graph of order n . Then if G  has only one universal vertex ( vertex with degree equal 

to n-1) and all its other vertices have degrees at most 2, then 1=)(   Gcmo . 
  

Proof. Let G  be a connected graph with vertex set 
},...,,,{= 121 nvvvvV

 such that 1=)( nvd  and 
2)( ivd

 for 

every 11  ni  and let }{= vD . Then 2

)(
1|=)(| i

i

vd
DvN 

, for every 11  ni . Hence, the set D  is a 

connected monopoly set in G , and 1=)(Gcmo .  
 
 

Theorem 3.11 Let G  be a connected graph with maximum degree 2 . Then  

 
).(=)( GGcmo c  

  

Proof. By Proposition 3.2. we have 
)()( GcmoGc 

. Conversely, Let D  be a connected dominating set of G . Then 

from definition we have that D  is connected, and 2

)(

2
1|)(|

vd
DvN 




 for every DVv  . Hence, D  is a 

connected monopoly set of G . Therefore, 
)()( GGcmo c . This completes the proof.  
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The converse of Theorem 3.11. not true. For example, 
1=)(=)( 1,1, ncn KKcmo 

, while 
nK n =)( 1,

 for 2>n . 
 

Theorem 3.12 Let G  be a connected graph. Then  

 2.)(3)(  GmoGcmo  
 

Proof. Let D  be a monopoly set in G  and let )(Dc  be 

the number of components in the subgraph D  induced 

by D . It is clear that )()( DcGmo  . Since every 

monopoly set in G  is a dominating set, it follows that there 

exists two components of D  ( namely, 
)(Dci  and 

)(Dc j , ji  ) such that 
3))(),(( DcDcd ji . By 

adding the vertices in the path between 
)(Dci  and 

)(Dc j  

to set D  decreases the number of components in D  by 
one. This procedure can be repeated it until remain only one 

component in D . Thus resulting in a connected 

monopoly set in G . it is clear that there exists at most 
1))(2( Dc  vertices added to D  to form a connected 

monopoly set. Hence  
1))(2(||)(  DcDGcmo  

1))(2()(  GmoGmo  
2.)(3  Gmo  

 The bound is sharp, nP
 and nC

 attainting this bound.  
 

Theorem 3.13 Let G  be a connected graph of order n  and 
size m . Then  

.2)( nmGcom   

The bound is sharp, nP
 achieves it.  

Proof. Since for any connected graph mn 1  it follows 
by Theorem 3.9. that  

.21)2(2)( nmnnnGcmo   
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